Nicolas Sergeant37
David Blum28
Malika Hamdane28
André Delacourte19
Séverine Bégard16
37Nicolas Sergeant
28David Blum
28Malika Hamdane
19André Delacourte
16Séverine Bégard
Learn More
  • Pascal Y Smith, Charlotte Delay, Johanne Girard, Marie-Amélie Papon, Emmanuel Planel, Nicolas Sergeant +2 others
  • 2011
Tauopathies represent a large class of neurological and movement disorders characterized by abnormal intracellular deposits of the microtubule-associated protein tau. It is now well established that mis-splicing of tau exon 10, causing an imbalance between three-repeat (3R) and four-repeat (4R) tau isoforms, can cause disease; however, the underlying(More)
  • Antoine Leboucher, Cyril Laurent, Francisco-José Fernandez-Gomez, Sylvie Burnouf, Laetitia Troquier, Sabiha Eddarkaoui +13 others
  • 2013
The τ pathology found in Alzheimer disease (AD) is crucial in cognitive decline. Midlife development of obesity, a major risk factor of insulin resistance and type 2 diabetes, increases the risk of dementia and AD later in life. The impact of obesity on AD risk has been suggested to be related to central insulin resistance, secondary to peripheral insulin(More)
  • Sébastien S Hébert, Aikaterini S Papadopoulou, Pascal Smith, Marie-Christine Galas, Emmanuel Planel, Asli N Silahtaroglu +3 others
  • 2010
Type III RNase Dicer is responsible for the maturation and function of microRNA (miRNA) molecules in the cell. It is now well-documented that Dicer and the fine-tuning of the miRNA gene network are important for neuronal integrity. However, the underlying mechanisms involved in neuronal death, particularly in the adult brain, remain poorly defined. Here we(More)
Tau, a neuronal protein involved in neurodegenerative disorders such as Alzheimer disease, which is primarily described as a microtubule-associated protein, has also been observed in the nuclei of neuronal and non-neuronal cells. However, the function of the nuclear form of Tau in neurons has not yet been elucidated. In this work, we demonstrate that acute(More)
In Alzheimer's disease, neurofibrillary degeneration results from the aggregation of abnormally phosphorylated Tau proteins into filaments and it may be related to the reactivation of mitotic mechanisms. In order to investigate the link between Tau phosphorylation and mitosis, Xenopus laevis oocytes in which most of the M-phase regulators have been(More)
  • Véronique Dorval, Pascal Y. Smith, Charlotte Delay, Ezequiel Calvo, Emmanuel Planel, Nadège Zommer +2 others
  • 2012
BACKGROUND The small non-protein-coding microRNAs (miRNAs) have emerged as critical regulators of neuronal differentiation, identity and survival. To date, however, little is known about the genes and molecular networks regulated by neuronal miRNAs in vivo, particularly in the adult mammalian brain. METHODOLOGY/PRINCIPAL FINDINGS We analyzed whole genome(More)
Alzheimer's disease (AD) is the most common form of neurodegenerative disorder in the ageing population. It is characterized by the cerebral accumulation of toxic amyloid-beta peptide assemblies (Abeta). The serine protease plasmin, which is generated from the inactive zymogen plasminogen through its proteolytic cleavage by tissue- (tPA) or urokinase-type(More)
Microtubule-associated Tau proteins are the basic component of intraneuronal and glial inclusions observed in many neurological disorders, the so-called tauopathies. Many etiological factors, phosphorylation, splicing, and mutations, relate Tau proteins to neurodegeneration. Molecular analysis has revealed that hyperphosphorylation and abnormal(More)
Microtubule-associated Tau proteins belong to a family of factors that polymerize tubulin dimers and stabilize microtubules. Tau is strongly expressed in neurons, localized in the axon and is essential for neuronal plasticity and network. From the very beginning of Tau discovery, proteomics methods have been essential to the knowledge of Tau biochemistry(More)
Amyloid precursor protein (APP) metabolism is central to the pathogenesis of Alzheimer disease. We showed recently that the amyloid intracellular domain (AICD), which is released by gamma-secretase cleavage of APP C-terminal fragments (CTFs), is strongly increased in cells treated with alkalizing drugs (Vingtdeux, V., Hamdane, M., Bégard, S., Loyens, A.,(More)