Learn More
OBJECTIVE The lesions of Parkinson disease spread through the brain in a characteristic pattern that corresponds to axonal projections. Previous observations suggest that misfolded α-synuclein could behave as a prion, moving from neuron to neuron and causing endogenous α-synuclein to misfold. Here, we characterized and quantified the axonal transport of(More)
Misfolded protein aggregates represent a continuum with overlapping features in neurodegenerative diseases, but differences in protein components and affected brain regions. The molecular hallmark of synucleinopathies such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy are megadalton α-synuclein-rich deposits suggestive of one(More)
The origin of α-synuclein (α-syn)-positive glial cytoplasmic inclusions found in oligodendrocytes in multiple system atrophy (MSA) is enigmatic, given the fact that oligodendrocytes do not express α-syn mRNA. Recently, neuron-to-neuron transfer of α-syn was suggested to contribute to the pathogenesis of Parkinson's disease. In this study, we explored(More)
Tau is a microtubule-associated protein that aggregates in neurodegenerative disorders known as tauopathies. Recently, studies have suggested that Tau may be secreted and play a role in neural network signalling. However, once deregulated, secreted Tau may also participate in the spreading of Tau pathology in hierarchical pathways of neurodegeneration. The(More)
OBJECTIVE To date, 3 rare missense mutations in the SNCA (α-synuclein) gene and the more frequent duplications or triplications of the wild-type gene are known to cause a broad array of clinical and pathological symptoms in familial Parkinson disease (PD). Here, we describe a French family with a parkinsonian-pyramidal syndrome harboring a novel(More)
The aggregation of α-synuclein (α-Syn), the primary component of Lewy bodies, into high molecular weight assemblies is strongly associated with Parkinson disease. This event is believed to result from a conformational change within native α-Syn. Molecular chaperones exert critical housekeeping functions in vivo including refolding, maintaining in a soluble(More)
The aggregation of alpha-synuclein (α-syn) and huntingtin (htt) into fibrillar assemblies in nerve and glial cells is a molecular hallmark of Parkinson's and Huntington's diseases. Within the aggregation process, prefibrillar and fibrillar oligomeric species form. Prefibrillar assemblies rather than fibrils are nowadays considered cytotoxic. However, recent(More)
α-Synuclein aggregation is implicated in a variety of diseases including Parkinson's disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. The association of protein aggregates made of a single protein with a variety of clinical phenotypes has been explained for prion diseases by the existence of different strains that(More)
α-Synuclein (α-syn) is a protein prevalent in neural tissue and known to undergo axonal transport. Intracellular α-syn aggregates are a hallmark of Parkinson's disease (PD). Braak and collaborators have suggested that in people who are destined to eventually develop PD, α-syn aggregate pathology progresses following a stereotypic pattern, starting in the(More)
The cellular hallmarks of Parkinson's disease (PD) are the loss of nigral dopaminergic neurons and the formation of α-synuclein-enriched Lewy bodies and Lewy neurites in the remaining neurons. Based on the topographic distribution of Lewy bodies established after autopsy of brains from PD patients, Braak and coworkers hypothesized that Lewy pathology primes(More)