Learn More
Mitochondrial involvement in yeast apoptosis is probably the most unifying feature in the field. Reports proposing a role for mitochondria in yeast apoptosis present evidence ranging from the simple observation of ROS accumulation in the cell to the identification of mitochondrial proteins mediating cell death. Although yeast is unarguably a simple model it(More)
Protein kinase Cα (PKCα) is a classical PKC isoform whose involvement in cell death is not completely understood. Bax, a major member of the Bcl-2 family, is required for apoptotic cell death and regulation of Bax translocation and insertion into the outer mitochondrial membrane is crucial for regulation of the apoptotic process. Here we show that PKCα(More)
The potential of Gafanhoto Park as an American cutaneous leishmaniasis (ACL) focus was evaluated by examination of sand fly vectors of the Leishmania parasite. This forest remnant is located in a periurban area of Divin6polis, Brazil, where autochthonous cases of ACL have been reported. Sand fly populations were monitored over a 2-yr period (2006-2008) by(More)
The Bcl-2 protein family plays a central role in mitochondrial membrane permeabilization. This event and the ensuing release of cytochrome c are decisive in the apoptotic cascade. Therefore, a better knowledge of these processes and their regulation will probably lead to the development of novel therapeutic strategies for treatment of apoptosis-related(More)
An alternative in vivo assay, based on growth inhibition of yeast expressing an individual mammalian protein kinase C (PKC) isoform (proportional to the degree of PKC activation), was used to characterize the activities of phorbol-12-myristate-13-acetate (PMA) and its analogues on classical (alpha and betaI), novel (delta and eta) and atypical (zeta) PKC(More)
Multilocus sequence typing (MLST) represents the gold standard genotyping method in studies concerning microbial population structure, being particularly helpful in the detection of clonal relatedness. However, its applicability on large-scale genotyping is limited due to the high cost and time spent on the task. The selection of the most informative(More)
In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73(More)
The virtual screening of a library of xanthone derivatives led us to the identification of potential novel MDM2 ligands. The activity of these compounds as inhibitors of p53-MDM2 interaction was investigated using a yeast phenotypic assay, herein developed for the initial screening. Using this approach, in association with a yeast p53 transactivation assay,(More)
The complexity of the mammalian p53 pathway and protein kinase C (PKC) family has hampered the discrimination of the effect of PKC isoforms on p53 activity. Using yeasts co-expressing the human wild-type p53 and a mammalian PKC-alpha, -delta, -epsilon or -zeta, we showed a differential regulation of p53 activity and phosphorylation state by PKC isoforms.(More)
The aim of the present study was to compare the potency of a series of widely used PKC inhibitors acting either at the regulatory (NPC 15437, tamoxifen and D-sphingosine) or at the catalytic domain (Ro 32-0432, chelerythrine and rottlerin) on individual mammalian PKC isoforms of the classical (alpha and betaI), novel (delta and eta) and atypical (zeta) PKC(More)