Learn More
Anatoxin-a is an important neurotoxin that acts a potent nicotinic acetylcholine receptor agonist. This characteristic makes anatoxin-a an important tool for the study of nicotinic receptors. Anatoxin-a has been used extensively in vitro experiments, however anatoxin-a has never been studied by in vivo microdialysis studies. This study test the effect of(More)
The hypocretins (Hcrt; also known as orexins) and melanin-concentrating hormone comprise distinct families of neuropeptides synthesized in cells located in the lateral hypothalamus and adjacent areas. The Hcrts are thought to modulate food intake and sleep/wake patterns in mammals. Melanin-concentrating hormone has a well-documented role in energy(More)
In this work, the involvement of ionotropic glutamatergic receptors and nitric oxide on striatal dopamine release induced by anatoxin-a was investigated in conscious and freely-moving rats. To study the participation of glutamatergic receptors, the effects of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors antagonist,(More)
The present study was carried out in order to compare the effects of administration of organic (methylmercury, MeHg) and inorganic (mercury chloride, HgCl 2 ) forms of mercury on in vivo dopamine (DA) release from rat striatum. Experiments were performed in conscious and freely moving female adult Sprague-Dawley (230-280 g) rats using brain microdialysis(More)
The aim of this study is to determine the effects of intrastriatal administration of MnCl2, on the extracellular levels of dopamine (DA) and metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in basal conditions and stimulated by depolarization with KCl and pargyline administration. Also, we studied the effect of MnCl2 on(More)
Anatoxin-a (AnTx) is a natural neurotoxin, which acts as a potent and stereoselective agonist at the nicotinic acetylcholine receptors. The in vivo actions of the AnTx on dopamine (DA) release are scarcely characterized. The aim of this study was to determine the neurochemical bases for AnTx-induced striatal DA release, using the brain microdialysis(More)
The possible protective effects of glutathione (GSH), cysteine (CYS) and methionine (MET) on the Methylmercury (MeHg)-induced dopamine (DA) release from rat striatum were investigated using in vivo microdialysis coupled to HPLC with electrochemical detection. Intrastriatal infusion of MeHg 400 microM increased extracellular DA levels to 1941 +/- 199% in(More)
The in vivo effects of inorganic mercury (Hg(2+)) on striatal dopamine (DA) release were studied in freely moving and conscious rats using brain microdialysis techniques. Intrastriatal administration of HgCl(2) (1mM) produced an increase in extracellular DA levels of 1717+/-375% with respect to basal levels. This effect was attenuated in a Ca(2+)-free(More)
The purpose of the present work was to assess the effects of flutriafol, a triazole fungicide, on in vivo dopamine (DA) release from rat striatum, using brain microdialysis coupled to high-performance liquid chromatography with electrochemical detection (HPLC-EC). Intrastriatal administration of flutriafol (1, 6 and 12 mM) produced significant(More)
The possible role of ionotropics glutamate receptors on the HgCl(2)-induced dopamine (DA) release from rat striatum was investigated by using in vivo brain microdialysis technique after administration of selective NMDA and AMPA/Kainate receptors antagonists dizocilpine (MK-801), D (-)-2-amino-5-phoshonopentanoic acid (AP5), and(More)