Lucía B Fuentes

Learn More
Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR). The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development(More)
OBJECTIVE Obesity-associated insulin resistance is characterized by a state of chronic, low-grade inflammation that is associated with the accumulation of M1 proinflammatory macrophages in adipose tissue. Although different evidence explains the mechanisms linking the expansion of adipose tissue and adipose tissue macrophage (ATM) polarization, in the(More)
Atherogenesis is the consequence of a variety of effector mechanisms rather than the result of a single functional molecule. In this connection, type IIA secretory phospholipase A2 (sPLA2) is an acute-phase reactant, which accumulates in atherosclerotic arterial walls, elicits several effects on monocytes, and has been related to the development of(More)
Type IIA secretory phospholipase A(2) (sPLA(2)) is an acute-phase reactant that plays a role in atherogenesis and is expressed in atherosclerotic arterial walls displaying inflammatory features. This generates a relevant question addressing the biological effects of this enzyme on monocytic cells, in view of the role of these cells in the inflammatory(More)
The objective of this article is to present an in vitro model of atrial cardiac tissue that could serve to study the mechanisms of remodeling related to atrial fibrillation (AF). We analyze the modification on gene expression and modifications on rotor dynamics following tissue remodeling. Atrial murine cells (HL-1 myocytes) were maintained in culture after(More)
OBJECTIVE A genomic region near the CDKN2A locus, encoding p16(INK4a), has been associated to type 2 diabetes and atherosclerotic vascular disease, conditions in which inflammation plays an important role. Recently, we found that deficiency of p16(INK4a) results in decreased inflammatory signaling in murine macrophages and that p16(INK4a) influences the(More)
Human group IIA secreted phospholipase A(2) (sPLA(2)-IIA) has been characterized in numerous inflammatory and neoplastic conditions. sPLA(2)-IIA can either promote or inhibit cell growth depending on the cellular type and the specific injury. We have previously demonstrated that exogenous sPLA(2)-IIA, by engagement to a membrane structure, induces(More)
The development of knock-out mice for Angiotensin II (Ang II) AT(2) receptors, which exhibited altered exploratory behavior, prompted us to investigate the cerebellum and brainstem. We evaluated the effect of stimulation/inhibition of Ang II receptors on hindbrain development, in offspring (postnatal days P0, P8) of pregnant rats treated during late(More)
Recently, it has become clear that many of the intracellular signals mediated by Ang II receptors are similar to the signaling pathways activated by receptor tyrosine kinases. In the present paper, we are reporting a full characterization of Ang II receptors in rat fetal membranes. We assayed binding of the Ang II antagonist [125I]Sar1Ile8Ang II and the AT2(More)
Despite advances in transgenic and gene transfer technologies, in vivo structure-function studies of the angiotensin II type I receptor (AT1R) have revealed limited information on the diverse actions of angiotensin II. Our objective in the present study was to determine if protein transduction technology with the use of the HIV-Tat protein transduction(More)