#### Filter Results:

#### Publication Year

2010

2016

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

In this paper we study smooth convex programming problems where the decision variables vector is split into several blocks of variables. We analyze the block coordinate gradient projection method in which each iteration consists of performing a gradient projection step with respect to a certain block taken in a cyclic order. Global sublinear rate of… (More)

We describe a general scheme for solving nonconvex optimization problems, where in each iteration the nonconvex feasible set is approximated by an inner convex approximation. The latter is defined using an upper bound on the nonconvex constraint functions. Under appropriate conditions on this upper bounding convex function, a monotone convergence to a KKT… (More)

The projected subgradient method for constrained minimization repeatedly interlaces subgradient steps for the objective function with projections onto the feasible region, which is the intersection of closed and convex constraints sets, to regain feasibility. The latter poses a computational difficulty and, therefore, the projected subgradient method is… (More)

We propose a distributed positioning algorithm to estimate the unknown positions of a number of target nodes, given distance measurements between target nodes and between target nodes and a number of reference nodes at known positions. Based on a geometric interpretation, we formulate the positioning problem as an implicit convex feasibility problem in… (More)

We introduce a first-order Mirror-Descent (MD) type algorithm for solving nondifferentiable convex problems having a combination of simple constraint set X (ball, simplex, etc.) and an additional functional constraint. The method is tuned to exploit the structure of X by employing an appropriate non-Euclidean distance-like function. Convergence results and… (More)

In this paper, a method for solving constrained convex optimization problems is introduced. The problem is cast equivalently as a parametric unconstrained one, the (single) parameter being the optimal value of the original problem. At each stage of the algorithm the parameter is updated and the resulting subproblem is only approximately solved. A linear… (More)

- ‹
- 1
- ›