Learn More
We present clinical, biochemical and cranial magnetic resonance imaging data of six pediatric patients with L-2-hydroxyglutaric aciduria. All the children have the same ethic origin and lived in the northern area of Portugal. Our findings reinforce the described phenotype of this rare metabolic disease with mental deficiency, severe cerebellar dysfunction,(More)
Methylmalonic aciduria (MMA) and homocystinuria, cblC type (MIM 277400) is the most frequent inborn error of vitamin B(12). The recent identification of the disease gene, MMACHC, has permitted preliminary genotype-phenotype correlations. We studied 24 Italian and 17 Portuguese patients with cblC defect to illustrate the spectrum of mutations in a southern(More)
In the large group of genetically undetermined infantile-onset mitochondrial encephalopathies, multiple defects of mitochondrial DNA-related respiratory-chain complexes constitute a frequent biochemical signature. In order to identify responsible genes, we used exome-next-generation sequencing in a selected cohort of patients with this biochemical(More)
A minority of cases of autism has been associated with several different organic conditions, including bioenergetic metabolism deficiency. In a population-based study, we screened associated medical conditions in a group of 120 children with autism (current age range 11y 5mo to 14y 4mo, mean age 12y 11mo [SD 9.6mo], male:female ratio 2.9:1). Children were(More)
We studied 21 patients, from 18 families, with L-2-hydroxyglutaric aciduria (L-2-HGA), a rare neurometabolic disorder with a homogeneous presentation: progressive neurodegeneration with extrapyramidal and cerebellar signs, seizures, and subcortical leukoencephalopathy. Increased levels of L-2-hydroxyglutaric acid in body fluids proved the diagnosis of(More)
3-Hydroxy-3-methylglutaric aciduria (OMIM 246450) is an autosomal recessive inborn error of the final step of leucine catabolic and ketogenic pathways, caused by deficiency of the enzyme 3-hydroxy-3-methylglutaryl CoA lyase (HL, HMGCL, EC 4.1.3.4). Clinically, deficiency of the enzyme results in metabolic acidosis, hyperammonemia, and infantile hypoketotic(More)
Maple syrup urine disease (MSUD) is an autosomal recessive disorder, caused by the defective function of the branched-chain alpha-ketoacid dehydrogenase complex (BCKD). BCKD is a mitochondrial complex, encoded by four nuclear genes (BCKDHA, BCKDHB, DBT and DLD), involved in the metabolism of branched-chain amino acids (BCAAs). Since the MSUD mutational(More)
Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings(More)
Glycogen branching enzyme deficiency (glycogen storage disease type IV, GSD-IV) is a rare autosomal recessive disorder of the glycogen synthesis with high mortality. Two female newborns showed severe hypotonia at birth and both died of cardiorespiratory failure, at 4 and 12 weeks, respectively. In both patients, muscle biopsies showed deposits of(More)
Leber's hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disorder characterized by bilateral loss of central vision, most frequently found in young adult males. In most patients there are no other neurological manifestations and cerebral neuroimaging is normal, but some rare cases of "LHON plus" have been described. Classical LHON(More)