Learn More
We describe OSIRIS, a three-dimensional, relativistic, massively parallel, object oriented particle-in-cell code for modeling plasma based accelerators. Developed in Fortran 90, the code runs on multiple platforms (Cray T3E, IBM SP, Mac clusters) and can be easily ported to new ones. Details on the code's capabilities are given. We discuss the(More)
The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for laser wakefield acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the(More)
A theory that describes how to load negative charge into a nonlinear, three-dimensional plasma wakefield is presented. In this regime, a laser or an electron beam blows out the plasma electrons and creates a nearly spherical ion channel, which is modified by the presence of the beam load. Analytical solutions for the fields and the shape of the ion channel(More)
We present the first three-dimensional fully kinetic electromagnetic relativistic particle-in-cell simulations of the collision of two interpenetrating plasma shells. The highly accurate plasma-kinetic " particle-in-cell " (with the total of 10 8 particles) parallel code OSIRIS has been used. Our simulations show: (i) the generation of long-lived(More)
It was shown recently that it may be computationally advantageous to perform computer simulations in a Lorentz boosted frame for a certain class of systems. However, even if the computer model relies on a covariant set of equations, it was pointed out that algorithmic difficulties related to discretization errors may have to be overcome in order to take(More)
L aser-accelerated proton sources are under active study because of their potential application to radiotherapy of cancerous tumours 1,2 , radiography 3 , generation of short-lived isotopes needed in positron emission tomography 4 , injectors for conventional accelerators 5 , and inertial confinement fusion 6. The goal of this research is to produce a(More)
There are many astrophysical and laboratory scenarios where kinetic effects play an important role. These range from astrophysical shocks and plasma shell collisions, to high intensity laser-plasma interactions, with applications to fast ignition and particle acceleration. Further understanding of these scenarios requires detailed numerical modelling, but(More)
The formation of strong, high Mach number (2-3), electrostatic shocks by laser pulses incident on overdense plasma slabs is observed in one- and two-dimensional particle-in-cell simulations, for a wide range of intensities, pulse durations, target thicknesses, and densities. The shocks propagate undisturbed across the plasma, accelerating the ions(More)
The concepts of matched-beam, self-guided laser propagation and ionization-induced injection have been combined to accelerate electrons up to 1.45 GeV energy in a laser wakefield accelerator. From the spatial and spectral content of the laser light exiting the plasma, we infer that the 60 fs, 110 TW laser pulse is guided and excites a wake over the entire(More)
We show that monoenergetic ion beams can be accelerated by moderate Mach number collisionless, electrostatic shocks propagating in a long scale-length exponentially decaying plasma profile. Strong plasma heating and density steepening produced by an intense laser pulse near the critical density can launch such shocks that propagate in the extended plasma at(More)