Lovy Pradeep

Learn More
Several studies attribute the slower phases in protein folding to prolyl isomerizations, and several others do not. A correlation exists between the number of prolines in a protein and the complexity of the mechanism with which it folds. In this study, we have demonstrated a direct correlation between the number of cis-prolyl bonds in a native protein and(More)
Cyclization of the N-terminal glutamine residue to pyroglutamic acid in onconase, an anti-cancer chemotherapeutic agent, increases the activity and stability of the protein. Here, we examine the correlated effects of the folding/unfolding process and the formation of this N-terminal pyroglutamic acid. The results in this study indicate that cyclization of(More)
A previously introduced kinetic-rate constant (k/k(0)) method, where k and k(0) are the folding (unfolding) rate constants in the mutant and the wild-type forms, respectively, of a protein, has been applied to obtain qualitative information about structure in the transition state ensemble (TSE) of bovine pancreatic ribonuclease A (RNase A), which contains(More)
Ribonuclease A (RNase A) undergoes more rapid conformational folding with its disulfide bonds intact than during oxidative folding from its reduced form. In this study, the effects of the mutants Y92G, Y92A, and Y92L on both the conformational and oxidative folding pathways were examined to determine the role of native interactions in different types of(More)
  • 1