Learn More
Conventional paired-pulse transcranial magnetic stimulation (TMS) techniques of assessing cortical excitability are limited by fluctuations in the motor evoked potential (MEP) amplitude. The aim of the present study was to determine the feasibility of threshold tracking TMS for assessing cortical excitability in a clinical setting and to establish normative(More)
A transient decrease in excitability occurs regularly during the S1 phase of threshold electrotonus to depolarizing conditioning stimuli for sensory and, less frequently, motor axons. This has been attributed to the outwardly rectifying action of fast K(+) channels, at least in patients with demyelinating diseases. This study investigates the genesis of(More)
Subthreshold electrical stimuli can generate a long-lasting increase in axonal excitability, superficially resembling the phase of superexcitability that follows a conditioning nerve impulse. This phenomenon of 'subthreshold superexcitability' has been investigated in single motor axons in six healthy human subjects, by tracking the excitability changes(More)
The present study explores the threshold behaviour of human axons and the mechanisms contributing to this behaviour. The changes in excitability of cutaneous afferents in the median nerve at the wrist were recorded to a long-lasting subthreshold conditioning stimulus, with a waveform designed to maximize the contribution of currents active in the(More)
This study investigated the excitability and accommodative properties of low-threshold human motor axons to test whether these motor axons have greater expression of the persistent Na(+) conductance, I(NaP). Computer-controlled threshold tracking was used to study 22 single motor units and the data were compared with compound motor potentials of various(More)
HCN channels are responsible for I(h), a voltage-gated inwardly rectifying current activated by hyperpolarization. This current appears to be more active in human sensory axons than motor and may play a role in the determination of threshold. Differences in I(h) are likely to be responsible for the high variability in accommodation to hyperpolarization seen(More)
Abstract  Hyperthermia challenges the nervous system's ability to transmit action potentials faithfully. Neuromuscular diseases, particularly those involving demyelination have an impaired safety margin for action potential generation and propagation, and symptoms are commonly accentuated by increases in temperature. The aim of this study was to examine the(More)
The present study addressed whether the excitability of motor axons could be documented by tracking a target submaximal contraction force rather than a target submaximal compound muscle action potential (CMAP). In 10 subjects, multiple excitability measures were recorded using the Trond protocol, tracking twitch contraction force and the CMAP in response to(More)
Threshold electrotonus involves tracking the changes in axonal excitability produced by subthreshold polarizing currents and is the only technique that allows insight into the function of internodal conductances in human subjects in vivo. There is often an abrupt transient reversal of the threshold change as excitability increases in response to(More)
We investigated the influence of the history of activity on the contractile properties of abductor pollicis brevis (APB) to define how the forces produced by individual stimuli change within a stimulus train, with a view to clarifying the optimal discharge frequency for force production in brief trains. Supramaximal electrical stimuli were delivered to the(More)
  • 1