Learn More
Tissue deposition of normally soluble proteins as insoluble amyloid fibrils is associated with serious diseases including the systemic amyloidoses, maturity onset diabetes, Alzheimer's disease and transmissible spongiform encephalopathy. Although the precursor proteins in different diseases do not share sequence homology or related native structure, the(More)
Structural studies of Alzheimer's amyloid fibrils have revealed information about the structure at different levels. The amyloid-beta peptide has been examined in various solvents and conditions and this has led to a model by which a conformational switching occurs from alpha-helix or random coil, to a beta-sheet structure. Amyloid fibril assembly proceeds(More)
Prion-like propagation of tau aggregation might underlie the stereotyped progression of neurodegenerative tauopathies. True prions stably maintain unique conformations ("strains") in vivo that link structure to patterns of pathology. We now find that tau meets this criterion. Stably expressed tau repeat domain indefinitely propagates distinct amyloid(More)
Protein aggregation results in beta-sheet-like assemblies that adopt either a variety of amorphous morphologies or ordered amyloid-like structures. These differences in structure also reflect biological differences; amyloid and amorphous beta-sheet aggregates have different chaperone affinities, accumulate in different cellular locations and are degraded by(More)
Alzheimer's disease and Creutzfeldt-Jakob disease are the best-known examples of a group of diseases known as the amyloidoses. They are characterized by the extracellular deposition of toxic, insoluble amyloid fibrils. Knowledge of the structure of these fibrils is essential for understanding the process of pathology of the amyloidoses and for the rational(More)
Missense mutations (A30P and A53T) in alpha-synuclein and the overproduction of the wild-type protein cause familial forms of Parkinson's disease and dementia with Lewy bodies. Alpha-synuclein is the major component of the filamentous Lewy bodies and Lewy neurites that define these diseases at a neuropathological level. Recently, a third missense mutation(More)
The molecular structure of the amyloid fibril has remained elusive because of the difficulty of growing well diffracting crystals. By using a sequence-designed polypeptide, we have produced crystals of an amyloid fiber. These crystals diffract to high resolution (1 A) by electron and x-ray diffraction, enabling us to determine a detailed structure for(More)
Alzheimer's disease is characterized by the aggregation and deposition of the Aβ peptide. This 40 or 42 residue peptide is the product of the proteolysis of the amyloid precursor protein membrane protein and is able to assemble to form ordered, stable amyloid fibrils as well as small, soluble, and potentially cytotoxic oligomers. The toxicity of the(More)
Amyloid fibrils are a major pathological feature of Alzheimer's disease as well as other amyloidoses including the prion diseases. They are an unusual phenomenon, being made up of different, normally soluble proteins which undergo a profound conformational change and assemble to form very stable, insoluble fibrils which accumulate in the extracellular(More)
Amyloid-beta (Abeta) peptide deposition as fibrillar senile plaques is a key element in the pathology of Alzheimer's disease. Here we present a high-resolution structure of an Abeta amyloid fibril using magnetically aligned preparations of a central Abeta domain which forms representative amyloid fibrils. Diffraction analysis of these samples revealed Bragg(More)