Learn More
Cell signaling proteins may form functional complexes that are capable of rapid signal turnover. These contacts may be stabilized by either scaffolding proteins or multiple interactions between members of the complex. In this study, we have determined the affinities between a regulator of G protein signaling protein, RGS4, and three members of the G(More)
Phospholipase C (PLC)-beta1 and PLC-beta2 are regulated by the Gq family of heterotrimeric G proteins and contain C2 domains. These domains are Ca2+-binding modules that serve as membrane-attachment motifs in a number of signal transduction proteins. To determine the role that C2 domains play in PLC-beta1 and PLC-beta2 function, we measured the binding of(More)
A major advance in biology is the ability to attach either green fluorescence protein (GFP) or one of its variants to a target protein and follow its cellular localization and interaction with other partners by fluorescence microscopy. Our laboratory has previously developed fluorescence energy-transfer methods to measure the kinetics and affinities of the(More)
Pleckstrin homology (PH) domains are membrane tethering devices found in many signal transducing proteins. These domains also couple to the betagamma subunits of GTP binding proteins (G proteins), but whether this association transmits allosteric information to the catalytic core is unclear. To address this question, we constructed protein chimeras in which(More)
Following platelet activation, platelets undergo a dramatic shape change mediated by the actin cytoskeleton and accompanied by secretion of granule contents. While the actin cytoskeleton is thought to influence platelet granule secretion, the mechanism for this putative regulation is not known. We found that disruption of the actin cytoskeleton by(More)
Protein palmitoylation is a dynamic process that regulates membrane targeting of proteins and protein-protein interactions. We have previously demonstrated a critical role for protein palmitoylation in platelet activation and have identified palmitoylation machinery in platelets. Using a novel proteomic approach, Palmitoyl Protein Identification and Site(More)
Neuronal calcium sensor-1 (NCS-1), a Ca(2+)-binding protein, plays an important role in the modulation of neurotransmitter release and phosphatidylinositol signaling pathway. It is known that the physiological activity of NCS-1 is governed by its myristoylation. Here, we present the role of myristoylation of NSC-1 in governing Ca(2+) binding and(More)
G protein-coupled receptors (GPCRs) can assume multiple conformations and possess multiple binding sites. Whereas endogenous agonists acting at the orthosteric binding site stabilize the active receptor conformation, small molecules that act at nonorthosteric sites can stabilize alternative conformations. The large majority of these allosteric modulators(More)
Signal transduction through G alpha(q) involves stimulation of phospholipase C beta (PLC beta) that results in increased intracellular Ca2+ and activation of protein kinase C. We have measured complex formation between G alpha(q) and PLC beta1 in vitro and in living PC12 and HEK293 cells by fluorescence resonance energy transfer. In vitro measurements show(More)
Calcium is a ubiquitous intracellular signaling molecule controlling a wide array of cellular processes including fertilization and egg activation. The mechanism for triggering intracellular Ca(2+) release in sea urchin eggs during fertilization is the generation of inositol-1,4,5-trisphosphate by phospholipase C (PLC) hydrolysis of(More)