#### Filter Results:

#### Publication Year

1976

2015

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

Shapiro, L.

We introduce the notion of doubly rooted plane trees and give a decomposition of these trees, called the butterfly decomposition which turns out to have many applications. From the butterfly decomposition we obtain a one-to-one correspondence between doubly rooted plane trees and free Dyck paths, which implies a simple derivation of a relation between the… (More)

The problem of counting plane trees with n edges and an even or an odd number of leaves was studied by Eu, Liu and Yeh, in connection with an identity on coloring nets due to Stanley. This identity was also obtained by Bonin, Shapiro and Simion in their study of Schröder paths, and it was recently derived by Coker using the Lagrange inversion formula. An… (More)

We give a combinatorial interpretation of a matrix identity on Catalan numbers and the sequence (1, 4, 4 2 , 4 3 ,. . .) which has been derived by Shapiro, Woan and Getu by using Riordan arrays. By giving a bijection between weighted partial Motzkin paths with an elevation line and weighted free Motzkin paths, we find a matrix identity on the number of… (More)