Learn More
The impacts of quaternary amine ligand density and matrix structure, namely hydrogel grafted and directly grafted, on state-of-the-art chromatographic membranes operated in bind-and-elute mode were evaluated for the purification of adenovirus serotype 5. The experiments were performed on a 96-well plate membrane holder, which is a convenient high-throughput(More)
Motivated by the demand for more economical capture and polishing steps in downstream processing of protein therapeutics, a novel strong cation-exchange chromatography stationary phase based on polyethylene terephthalate (PET) high surface area short-cut fibers is presented. The fiber surface is modified by grafting glycidyl methacrylate (GMA) via(More)
We report on the rational design and implementation of flowthrough (FT) platforms for purification of virus vectors (VVs) and virus-like particles (VLPs), combining anion-exchange polyallylamine membranes (Sartobind STIC) and core-shell octylamine resins (CaptoCore 700). In one configuration, the VV bulk is concentrated and conditioned with appropriate(More)
Recombinant protein-based virus-like particles (VLPs) are steadily gaining in importance as innovative vaccines against cancer and infectious diseases. Multiple VLPs are currently evaluated in clinical phases requiring a straightforward and rational process design. To date, there is no generic platform process available for the purification of VLPs. In(More)
Monoclonal antibodies (mAb) currently dominate the market for protein therapeutics. Because chromatography unit operations are critical for the purification of therapeutic proteins, the process integration of novel chromatographic stationary phases, driven by the demand for more economic process schemes, is a field of ongoing research. Within this study it(More)
  • 1