Louis-Sebastien Guimond

Learn More
We describe the design of a family of aperiodic PRNGs (APRNGs) introduced in [3]. We show how a one dimensional two tile cut and project quasicrystal (2TQC) used in conjunction with LCGs in an APRNG generates an infinite aperiodic pseudorandom sequence. In the suggested design, any 2TQC corresponding to unitary quadratic Pisot number combined with either(More)
We describe the design of a family of aperiodic pseudorandom number generator (APRNG). These deterministic generators are based on linear congruential generators (LCGs) and, unlike any other deterministic PRNG, lead to nonperiodic pseudorandom sequences. An APRNG consists of several LCGs whose combination, controlled by a quasicrystal, forms an infinite(More)
  • 1