Learn More
Previous investigations have reported that space flight may produce a stimulating effect on microbial metabolism; however, the specific underlying mechanisms associated with the observed changes have not yet been identified. In an effort to systematically evaluate the effect of space flight on each phase of microbial growth (lag, exponential and(More)
Spaceflight results in a number of adaptations to skeletal muscle, including atrophy and shifts toward faster muscle fiber types. To identify changes in gene expression that may underlie these adaptations, we used both microarray expression analysis and real-time polymerase chain reaction to quantify shifts in mRNA levels in the gastrocnemius from mice(More)
Our previous results with flight (FLT) mice showed abnormalities in thymuses and spleens that have potential to compromise immune defense mechanisms. In this study, the organs were further evaluated in C57BL/6 mice after Space Shuttle Atlantis returned from a 13-day mission. Thymuses and spleens were harvested from FLT mice and ground controls housed in(More)
Bone marrow cells were isolated from the humeri of C57BL/6 mice after a 13-day flight on the space shuttle Space Transportation System (STS)-118 to determine how spaceflight affects differentiation of cells in the granulocytic lineage. We used flow cytometry to assess the expression of molecules that define the maturation/activation state of cells in the(More)
The biomechanical characteristics of sciatic nerve and associated spinal roots of mice were investigated. Both normal and postcrush nerve materials were tested in the same fashion using superimposed elongation, force and geometry data. The results show that nerve and roots differ considerably both in the force they sustain before failure and in the other(More)
Spaceflight is a unique environment with profound effects on biological systems including tissue redistribution and musculoskeletal stresses. However, the more subtle biological effects of spaceflight on cells and organisms are difficult to measure in a systematic, unbiased manner. Here we test the utility of the molecularly barcoded yeast deletion(More)
For the scientific community, the ability to fly mice under weightless conditions in space offers several advantages over the use of rats. These advantages include the option of testing a range of transgenic animals, the ability to increase the number of animals that can be flown, and reduced demands on shuttle resources (food, water, animal mass) and crew(More)
The ultimate survival of humanity is dependent upon colonization of other planetary bodies. Key challenges to such habitation are (patho)physiologic changes induced by known, and unknown, factors associated with long-duration and distance space exploration. However, we currently lack biological models for detecting and studying these changes. Here, we use a(More)
The biomechanics of spinal nerve roots obtained from normal and nerve-crushed mice were evaluated. Photographs and longitudinal force measurements were taken as nerve roots were elongated through mechanical failure. Proportional limit stress and strain as well as the apparent modulus were calculated from photographic and force measurements to characterize(More)
Microgravity has a profound effect on cardiovascular function, however, little is known about the impact of microgravity on progenitors that reside within the heart. We investigated the effect of simulated microgravity exposure on progenitors isolated from the neonatal and adult human heart by quantifying changes in functional parameters, gene expression(More)