Learn More
We show that many coupled oscillator array configurations considered in the literature can be put into a simple form so that determining the stability of the synchronous state can be done by a master stability function, which can be tailored to one's choice of stability requirement. This solves, once and for all, the problem of synchronous stability for any(More)
We quantify the dynamical implications of the small-world phenomenon by considering the generic synchronization of oscillator networks of arbitrary topology. The linear stability of the synchronous state is linked to an algebraic condition of the Laplacian matrix of the network. Through numerics and analysis, we show how the addition of random shortcuts(More)
That is, the system has two symmetric periodic attractors, one of which is shown in Fig. 2(c). In this lemma, we can see an essential function of the ICC that makes stable dynamics by averaging two expanding maps with opposite slopes (d=d x)f (x; 1) > 1, (d=d x)f (x; 01) < 01, and 1=2j(d=d x)f (x; 1) + (d=d x)f (x; 01)j < 1 for x a < j xj < x b. Then Lemma(More)
The field of chaotic synchronization has grown considerably since its advent in 1990. Several subdisciplines and ''cottage industries'' have emerged that have taken on bona fide lives of their own. Our purpose in this paper is to collect results from these various areas in a review article format with a tutorial emphasis. Fundamentals of chaotic(More)
Master-stability functions (MSFs) are fundamental to the study of synchronization in complex dynamical systems. For example, for a coupled oscillator network, a necessary condition for synchronization to occur is that the MSF at the corresponding normalized coupling parameters be negative. To understand the typical behaviors of the MSF for various chaotic(More)
In the analysis of complex, nonlinear time series, scientists in a variety of disciplines have relied on a time delayed embedding of their data, i.e., attractor reconstruction. The process has focused primarily on intuitive, heuristic, and empirical arguments for selection of the key embedding parameters, delay and embedding dimension. This approach has(More)
A definition of synchronization of coupled dynamical systems is provided. We discuss how such a definition allows one to identify a unifying framework for synchronization of dynamical systems, and show how to encompass some of the different phenomena described so far in the context of synchronization of chaotic systems.