Louis M. Kunkel

Learn More
The protein product of the human Duchenne muscular dystrophy locus (DMD) and its mouse homolog (mDMD) have been identified by using polyclonal antibodies directed against fusion proteins containing two distinct regions of the mDMD cDNA. The DMD protein is shown to be approximately 400 kd and to represent approximately 0.002% of total striated muscle(More)
The development of cell or gene therapies for diseases involving cells that are widely distributed throughout the body has been severely hampered by the inability to achieve the disseminated delivery of cells or genes to the affected tissues or organ. Here we report the results of bone marrow transplantation studies in the mdx mouse, an animal model of(More)
The 14 kb human Duchenne muscular dystrophy (DMD) cDNA corresponding to a complete representation of the fetal skeletal muscle transcript has been cloned. The DMD transcript is formed by at least 60 exons which have been mapped relative to various reference points within Xp21. The first half of the DMD transcript is formed by a minimum of 33 exons spanning(More)
The complete sequence of the human Duchenne muscular dystrophy (DMD) cDNA has been determined. The 3685 encoded amino acids of the protein product, dystrophin, can be separated into four domains. The 240 amino acid N-terminal domain has been shown to be conserved with the actin-binding domain of alpha-actinin. A large second domain is predicted to be(More)
The primary cause of Duchenne muscular dystrophy (DMD) is a mutation in the dystrophin gene leading to the absence of the corresponding RNA transcript and protein. Absence of dystrophin leads to disruption of the dystrophin-associated protein complex and substantial changes in skeletal muscle pathology. Although the histological pathology of dystrophic(More)
Duchenne and Becker muscular dystrophies are caused by defects of the dystrophin gene. Expression of this large X-linked gene is under elaborate transcriptional and splicing control. At least five independent promoters specify the transcription of their respective alternative first exons in a cell-specific and developmentally controlled manner. Three(More)
Mutations in genes encoding for the sarcoglycans, a subset of proteins within the dystrophin-glycoprotein complex, produce a limb-girdle muscular dystrophy phenotype; however, the precise role of this group of proteins in the skeletal muscle is not known. To understand the role of the sarcoglycan complex, we looked for sarcoglycan interacting proteins with(More)
An important corollary to the recent advances in our understanding of the primary cause of Duchenne muscular dystrophy, is the validation of genuine genetic homologues as animal models of the disease in which potential therapies can be tested. The persistent skeletal muscle necrosis that characterizes human Duchenne muscular dystrophy is also seen in the(More)
A number of individuals with aberrant Y chromosomes have been tested for the presence of Y-chromosome-specific reiterated DNA. These studies locate Y-chromosome-specific reiterated sequences on the long arm of the Y chromosome. Correlation with phenotype and other known Y chromosome markers establish that the Y-chromosome-specific reiterated DNA discussed(More)
Deletions giving rise to Duchenne muscular dystrophy (DMD) and the less severe Becker muscular dystrophy (BMD) occur in the same large gene on the short arm of the human X chromosome. We present a molecular mechanism to explain the clinical difference in severity between DMD and BMD patients who bear partial deletions of the same gene locus. The model is(More)