Learn More
The protein product of the human Duchenne muscular dystrophy locus (DMD) and its mouse homolog (mDMD) have been identified by using polyclonal antibodies directed against fusion proteins containing two distinct regions of the mDMD cDNA. The DMD protein is shown to be approximately 400 kd and to represent approximately 0.002% of total striated muscle(More)
The 14 kb human Duchenne muscular dystrophy (DMD) cDNA corresponding to a complete representation of the fetal skeletal muscle transcript has been cloned. The DMD transcript is formed by at least 60 exons which have been mapped relative to various reference points within Xp21. The first half of the DMD transcript is formed by a minimum of 33 exons spanning(More)
The development of cell or gene therapies for diseases involving cells that are widely distributed throughout the body has been severely hampered by the inability to achieve the disseminated delivery of cells or genes to the affected tissues or organ. Here we report the results of bone marrow transplantation studies in the mdx mouse, an animal model of(More)
Mutations in genes encoding for the sarcoglycans, a subset of proteins within the dystrophin-glycoprotein complex, produce a limb-girdle muscular dystrophy phenotype; however, the precise role of this group of proteins in the skeletal muscle is not known. To understand the role of the sarcoglycan complex, we looked for sarcoglycan interacting proteins with(More)
The complete sequence of the human Duchenne muscular dystrophy (DMD) cDNA has been determined. The 3685 encoded amino acids of the protein product, dystrophin, can be separated into four domains. The 240 amino acid N-terminal domain has been shown to be conserved with the actin-binding domain of alpha-actinin. A large second domain is predicted to be(More)
Satellite cells are dormant progenitors located at the periphery of skeletal myofibers that can be triggered to proliferate for both self-renewal and differentiation into myogenic cells. In addition to anatomic location, satellite cells are typified by markers such as M-cadherin, Pax7, Myf5, and neural cell adhesion molecule-1. The Pax3 and Pax7(More)
OBJECTIVES Use electronic health records Autism Spectrum Disorder (ASD) to assess the comorbidity burden of ASD in children and young adults. STUDY DESIGN A retrospective prevalence study was performed using a distributed query system across three general hospitals and one pediatric hospital. Over 14,000 individuals under age 35 with ASD were(More)
The primary cause of Duchenne muscular dystrophy (DMD) is a mutation in the dystrophin gene leading to the absence of the corresponding RNA transcript and protein. Absence of dystrophin leads to disruption of the dystrophin-associated protein complex and substantial changes in skeletal muscle pathology. Although the histological pathology of dystrophic(More)
alpha-Dystrobrevin is both a dystrophin homologue and a component of the dystrophin protein complex. Alternative splicing yields five forms, of which two predominate in skeletal muscle: full-length alpha-dystrobrevin-1 (84 kD), and COOH-terminal truncated alpha-dystrobrevin-2 (65 kD). Using isoform-specific antibodies, we find that alpha-dystrobrevin-2 is(More)
Deletions giving rise to Duchenne muscular dystrophy (DMD) and the less severe Becker muscular dystrophy (BMD) occur in the same large gene on the short arm of the human X chromosome. We present a molecular mechanism to explain the clinical difference in severity between DMD and BMD patients who bear partial deletions of the same gene locus. The model is(More)