Learn More
Food-web processes are important controls of oceanic biogenic carbon flux and ocean-atmosphere carbon dioxide exchange. Two key controlling parameters are the growth efficiencies of the principal trophic components and the rate of carbon remineralization. We report that bacterial growth efficiency is an inverse function of temperature. This relationship(More)
The Joint Global Ocean Flux Study of the Scientific Committee on Oceanic Research (SCOR) is a Core Project of the International Geosphere-Biosphere Programme (IGBP). It is planned by a SCOR/IGBP Scientific Steering Committee. In addition to funds from the JGOFS sponsors, SCOR and IGBP, support is provided for international JGOFS planning activities by(More)
The seasonal patterns of phytoplankton biomass and production were determined in the North Water, located West (o751W), and South (o761N). Phytoplankton biomass and production were low during April throughout the North Water. Biomass first increased in the East during April. From there, the biomass spread north-and westwards during May–June, when the bloom(More)
Temperate symbiotic corals, such as the Mediterranean species Cladocora caespitosa, live in seasonally changing environments, where irradiance can be ten times higher in summer than winter. These corals shift from autotrophy in summer to heterotrophy in winter in response to light limitation of the symbiont's photosynthesis. In this study, we determined the(More)
Although recent studies suggest that climate change may substantially accelerate the rate of species loss in the biosphere, only a few studies have focused on the potential consequences of a spatial reorganization of biodiversity with global warming. Here, we show a pronounced latitudinal increase in phytoplanktonic and zooplanktonic biodiversity in the(More)
Latitudinal gradients in diversity are among the most striking features in ecology. For terrestrial species, climate (i.e. temperature and precipitation) is believed to exert a strong influence on the geographical distributions of diversity through its effects on energy availability. Here, we provide the first global description of geographical variation in(More)
A general model of species diversity predicts that the latter is maximized when productivity and disturbance are balanced. Based on this model, we hypothesized that the response of bacterial diversity to the ratio of viral to bacterial production (VP/BP) would be dome-shaped. In order to test this hypothesis, we obtained data on changes in bacterial(More)
In April 1983, differential-enrichment bioassays were conducted on natural sea-ice microalgae from Hudson Bay, Canadian Arctic. Incubations were done both in the laboratory (at about 4 "-5°C) and in situ at the ice-water interface (-1.5 " C). Actual growth of the cultures was nutrient limited. On the basis of our observations and using recalculated data(More)
Ecological succession provides a widely accepted description of seasonal changes in phytoplankton and mesozooplankton assemblages in the natural environment, but concurrent changes in smaller (i.e. microbes) and larger (i.e. macroplankton) organisms are not included in the model because plankton ranging from bacteria to jellies are seldom sampled and(More)
Arrieta et al. (Reports, 17 April 2015, p. 331) propose that low concentrations of labile dissolved organic carbon (DOC) preclude prokaryotic consumption of a substantial fraction of DOC in the deep ocean and that this dilution acts as an alternative mechanism to recalcitrance for long-term DOC storage. Here, we show that the authors' data do not support(More)