Lou Brundin

8Alexandre I Danilov
7Ruxandra Covacu
6Mohsen Khademi
Learn More
  • Ashley H Beecham, Nikolaos A Patsopoulos, Dionysia K Xifara, Mary F Davis, Anu Kemppinen, Chris Cotsapas +187 others
  • 2013
Using the ImmunoChip custom genotyping array, we analyzed 14,498 subjects with multiple sclerosis and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially associated regions (P < 1.0 × 10(-4)). In a replication phase, we combined these data with previous genome-wide association study (GWAS) data from an independent 14,802(More)
It was long held as an axiom that new neurons are not produced in the adult human brain. More recent studies have identified multipotent cells whose progeny express glial or neuronal markers. This discovery may lead to new therapeutic strategies for CNS disorders, either by stimulating neurogenesis in vivo or by transplanting multipotent progenitor cells(More)
Multiple sclerosis is an inflammatory disease of the central nervous system characterized by inflammation, demyelination, axonal degeneration and accumulation of neurological disability. Previously, we demonstrated that stem cells constitute a possible endogenous source for remyelination. We now addressed the question of whether neurogenesis can occur in(More)
  • Ellen Iacobaeus, Petra Amoudruz, Mikael Ström, Mohsen Khademi, Lou Brundin, Jan Hillert +5 others
  • 2011
BACKGROUND Most patients with relapsing-remitting multiple sclerosis (RRMS) eventually enter a secondary progressive (SPMS) phase, characterized by increasing neurological disability. The mechanisms underlying transition to SPMS are unknown and effective treatments and biomarkers are lacking. Vascular endothelial growth factor-A (VEGF-A) is an angiogenic(More)
  • Mohsen Khademi, Ann M. Dring, Jonathan D. Gilthorpe, Anna Wuolikainen, Faiez Al Nimer, Robert A. Harris +5 others
  • 2013
Inflammatory mediators have crucial roles in leukocyte recruitment and subsequent central nervous system (CNS) neuroinflammation. The extent of neuronal injury and axonal loss are associated with the degree of CNS inflammation and determine physical disability in multiple sclerosis (MS). The aim of this study was to explore possible associations between a(More)
In multiple sclerosis, the central nervous system is lesioned through invasion of plaque-forming inflammatory cells, primarily contributing to immune attack of myelin and oligodendrocytes. In this report we address the possible activation and differentiation of central nervous system stem cells following such immunological insults in a well-characterized(More)
There is a long history of research into body fluid biomarkers in neurodegenerative and neuroinflammatory diseases. However, only a few biomarkers in cerebrospinal fluid (CSF) are being used in clinical practice. Anti-aquaporin-4 antibodies in serum are currently useful for the diagnosis of neuromyelitis optica (NMO), but we could expect novel CSF(More)
The myelination of axons by oligodendrocytes has been suggested to be modulated by experience, which could mediate neural plasticity by optimizing the performance of the circuitry. We have assessed the dynamics of oligodendrocyte generation and myelination in the human brain. The number of oligodendrocytes in the corpus callosum is established in childhood(More)
PURPOSE Cells in the ependymal region in the adult central nervous system (CNS) have been found to possess neural progenitor cell (NPC) like features including capacity for generating new neurons and glia in response to injury and inflammatory disease. Whether these cells are activated after a peripheral nerve injury has not previously been extensively(More)
Degeneration of central nervous system tissue commonly occurs during neuroinflammatory conditions, such as multiple sclerosis and neurotrauma. During such conditions, neural stem/progenitor cell (NPC) populations have been suggested to provide new cells to degenerated areas. In the normal brain, NPCs from the subventricular zone generate neurons that settle(More)