Learn More
In this paper, a method for the finite time estimation of the switching times in linear switched systems is proposed. The approach is based on algebraic tools (differential algebra, module theory and operational calculus) and distribution theory. Switching time estimates are given by explicit algebraic formulae that can be implemented in a straightforward(More)
SUMMARY This paper deals with on-line identification of continuous-time systems subject to impulsive terms. Using a distribution framework, a scheme is proposed in order to annihilate singular terms in differential equations representing a class of impulsive systems. As a result, an on-line estimation of unknown parameters is provided, regardless of the(More)
This paper deals with on-line identification of continuous-time systems with structured entries. Such entries, which may consist in inputs, perturbations or piecewise polynomial (time varying) parameters, can be defined as signals that can be easily annihilated. The proposed cancellation method allows to obtain non asymptotic estimators for the unknown(More)
In this paper we discuss delay estimation in time-delay systems. In the Introduction a short overview is given of some existing estimation techniques as well as identifiability studies. In the following sections we propose several algorithms for the delay identification based on variable structure observers.
A fast identification algorithm is proposed for systems with delayed inputs. It is based on a non-asymptotic distributional estimation technique initiated in the framework of systems without delay. Such technique leads to simple realization schemes, involving integrators, multipliers and piecewise polynomial or exponential time functions. Thus, it allows(More)