Learn More
The mushroom Coprinopsis cinerea is a classic experimental model for multicellular development in fungi because it grows on defined media, completes its life cycle in 2 weeks, produces some 10(8) synchronized meiocytes, and can be manipulated at all stages in development by mutation and transformation. The 37-megabase genome of C. cinerea was sequenced and(More)
We have developed a simple and efficient transformation system for the agaric fungus, Coprinus cinereus. Protoplasts were prepared from asexual spores that harbor one or two mutations in the structural gene for tryptophan synthetase. The protoplasts can be stably transformed using the cloned Coprinus gene at a frequency of 1 in 10(4) viable protoplasts. A(More)
Finding a compatible mating partner is an essential step in the life cycle of most sexually reproducing organisms. Fungi have two or more mating types, and only cells of different mating type combine to produce diploid cells. In mushrooms, this is taken to extremes, with the occurrence of many thousands of mating types. But, having gone to such(More)
The A mating type locus of Coprinus cinereus determines mating compatibility by regulating essential steps in sexual development. Each A locus contains several genes separated into two functionally independent complexes termed A alpha and A beta, and the multiple alleles of these genes generate an estimated 160 A mating specificities. The genes encode two(More)
In the 1940s, screens for metabolic mutants of the filamentous fungus Neurospora crassa established the fundamental, one-to-one relationship between a gene and a specific protein, and also established fungi as important genetic organisms. Today, a wide range of filamentous species, which represents a billion years of evolutionary divergence, is used for(More)
Seven transformants having varying numbers of non-homologously integrated copies of the isocitrate lyase gene, acu-7, were analysed for enzyme activity. Maximum levels of activity, 3.8 times that of the wild type, were observed in a transformant with only two gene copies whereas eight gene copies in another transformant led to only 25% wild type activity.(More)
The recognition of compatible mating partners in the basidiomycete fungi requires the coordinated activities of two gene complexes defined as the mating-type genes. One complex encodes members of the homeobox family of transcription factors, which heterodimerize on mating to generate an active transcription regulator. The other complex encodes peptide(More)
The B mating type locus of the basidiomycete Coprinus cinereus encodes a large family of lipopeptide pheromones and their seven transmembrane domain receptors. Here we show that the B42 locus, like the previously described B6 locus, derives its unique specificity from nine multiallelic genes that are organized into three subgroups each comprising a receptor(More)
In the mushroom Coprinus cinereus, the multiallelic B mating type genes are predicted to encode a large family of seven-transmembrane domain receptors and CaaX-modified pheromones. We have shown that a single amino acid change Q229P in transmembrane domain VI of one receptor confers a self-compatible mating phenotype. Using a heterologous yeast assay, we(More)