Lorine J Wilkinson

Learn More
The Crim1 gene is predicted to encode a transmembrane protein containing six von Willebrand-like cysteine-rich repeats (CRRs) similar to those in the BMP-binding antagonist Chordin (Chrd). In this study, we verify that CRIM1 is a glycosylated, Type I transmembrane protein and demonstrate that the extracellular CRR-containing domain can also be secreted,(More)
Crim1, a transmembrane cysteine-rich repeat-containing protein that is related to chordin, plays a role in the tethering of growth factors at the cell surface. Crim1 is expressed in the developing kidney; in parietal cells, podocytes, and mesangial cells of the glomerulus; and in pericytes that surround the arterial vasculature. A gene-trap mouse line with(More)
Crim1 is a transmembrane protein, containing six vWF-C type cysteine-rich repeats, that tethers growth factors to the cell surface. A mouse line, KST264, generated in a LacZ insertion mutagenesis gene-trap screen, was examined to elucidate Crim1 function in development. We showed that Crim1(KST264/KST264) mice were not null for Crim1 due to the production(More)
The kidney is the most complex organ within the urogenital system. The adult mouse kidney contains in excess of 8,000 mature nephrons, each of which can be subdivided into a renal corpuscle and 14 distinct tubular segments. The histological complexity of this organ can make the clarification of the site of gene expression by in situ hybridisation difficult.(More)
Crim1 is a transmembrane protein that regulates the bioavailability of growth factors such as VEGFA. Crim1(KST264)(/)(KST264) hypomorphic mice develop renal disease characterized by glomerular cysts and loss of endothelial integrity, progressing to peritubular and pericystic fibrosis. Peritubular capillary endothelial cells display morphological changes as(More)
In an attempt to elucidate the role of Slit2 in vertebrate kidney development, the effect of adding exogenous human Slit2 protein (hSlit2) to developing murine metanephric kidney explants was examined. To confirm the activity of the recombinant Slit2 protein, neurons from 8 day old chick sympathetic nerve chain dorsal root ganglia were cultured with hSlit2(More)
The mammalian kidney may well be one of the most complex organs of postnatal life. Each adult human kidney contains on average more than one million functional filtration units, the nephrons, residing within a specialized cellular interstitium. Each kidney also contains over 25 distinct cell types, each of which must be specifically aligned with respect to(More)
Crim1 is a developmentally expressed, transmembrane protein essential for normal embryonic development. We generated mice engineered to contain a Crim1 conditional null allele by flanking exons three and four of Crim1 with unidirectional LoxP sites. After crossing Crim1+/FLOX mice with a CMV-Cre line, a Crim1+/Δflox colony was established after germline(More)
Gestational stressors, including glucocorticoids and protein restriction, can affect kidney development and hence final nephron number. Since hypoxia is a common insult during pregnancy, we studied the influence of oxygen tension on kidney development in models designed to represent a pathological hypoxic insult. In vivo mouse models of moderate, transient,(More)
The discipline of paediatric nephrology encompasses the congenital nephritic syndromes, renal dysplasias, neonatal renal tumours, early onset cystic disease, tubulopathies and vesicoureteric reflux, all of which arise due to defects in normal kidney development. Indeed, congenital anomalies of the kidney and urinary tract (CAKUT) represent 20–30% of(More)