Learn More
In the urinary bladder, the capsaicin-gated ion channel TRPV1 is expressed both within afferent nerve terminals and within the epithelial cells that line the bladder lumen. To determine the significance of this expression pattern, we analyzed bladder function in mice lacking TRPV1. Compared with wild-type littermates, trpv1−/− mice had a higher frequency of(More)
P. Abrams , K.E. Andersson, L. Birder, L. Brubaker, L. Cardozo, C. Chapple, A. Cottenden, W. Davila, D. de Ridder, R. Dmochowski, M. Drake, C. DuBeau, C. Fry, P. Hanno, J. Hay Smith, S. Herschorn, G. Hosker, C. Kelleher, H. Koelbl, S. Khoury,* R. Madoff, I. Milsom, K. Moore, D. Newman, V. Nitti, C. Norton, I. Nygaard, C. Payne, A. Smith, D. Staskin, S.(More)
In mammals, the bladder stores urine without permitting the passage of urine contents into the bloodstream, a function, in part, of the uroepithelial-associated tight junction complex. The protein constituents that make up this high-resistance barrier in the bladder are currently unknown, although the claudins, a multigene family, are thought to govern(More)
We have investigated the intracellular signaling mechanisms underlying the release of nitric oxide (NO) evoked by beta-adrenoceptor (AR) agonists in urinary bladder strips and cultured bladder urothelial cells from adult rats. Reverse transcription-PCR revealed that inducible NO synthase and endothelial NOS but not neuronal NOS genes were expressed in(More)
Although the urinary bladder urothelium has classically been thought of as a passive barrier to ions and solutes, a number of novel properties have been recently attributed to urothelial cells. Studies have revealed that the urothelium is involved in sensory mechanisms (i.e. the ability to express a number of sensor molecules or respond to thermal,(More)
An important, but not well understood, function of epithelial cells is their ability to sense changes in their extracellular environment and then communicate these changes to the underlying nervous, connective, and muscular tissues. This communication is likely to be important for tube- and sac-shaped organs such as blood vessels, the lungs, the gut, and(More)
Mitochondrial nitric oxide synthase (mtNOS), its cellular NOS isoform, and the effects of mitochondrially produced NO on bioenergetics have been controversial since mtNOS was first proposed in 1995. Here we functionally demonstrate the presence of a NOS in cardiac mitochondria. This was accomplished by direct porphyrinic microsensor measurement of(More)
The umbrella cells that line the bladder are mechanosensitive, and bladder filling increases the apical surface area of these cells; however, the upstream signals that regulate this process are unknown. Increased pressure stimulated ATP release from the isolated uroepithelium of rabbit bladders, which was blocked by inhibitors of vesicular transport,(More)
Nitric oxide (NO) has been implicated in the regulation of the lower urinary tract. However, the source(s) of NO production in the urinary bladder (UB) has not been determined. Accordingly, we used a porphyrinic microsensor placed on the surface of UB strips in vitro to directly measure endogenous NO production. The afferent neurotoxin, capsaicin, and the(More)