Learn More
The modal cutoff of square-lattice photonic crystal fibers with a finite number of air-hole rings has been accurately investigated to our knowledge for the first time. By analyzing the leaky behavior of the second-order mode, we have obtained a phase diagram that describes the regions of single-mode and multimode operation as well as the endlessly(More)
We analyze the localized surface plasmon resonance spectra of periodic square lattice arrays of gold nano-disks, and we describe numerically and experimentally the effect of disorder on resonance width, spectrum, and EM field enhancement in increasingly randomized patterns. The periodic structure shows a narrower and stronger extinction peak, conversely we(More)
— We propose an odometric system for localizing a walking humanoid robot using standard sensory equipment, i.e., a camera, an Inertial Measurement Unit, joint encoders and foot pressure sensors. Our method has the prediction-correction structure of an Extended Kalman Filter. At each sampling instant, position and orientation of the torso are predicted on(More)
We develop a localization method for a single-UAV/multi-UGV heterogeneous system of robots. Considering the natural supervisory role of the UAV and the challenging (but realistic) assumption that the UAV-to-UGV measurements do not include the identities of the UGVs, we have adopted the PHD filter as a multi-target tracking technique. However, the standard(More)
Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can(More)
The mechanism of the fine ripples, perpendicular to laser polarization, on the surface of (semi)transparent materials with period smaller than the vacuum wavelength, λ, of the incident radiation is proposed and experimentally validated. The sphere-to-plane transformation of nanoplasma bubbles responsible for the in-bulk ripples accounts for the fine ripples(More)
Three dimensional (3D) ion beam lithography (IBL) is used to directly pattern 3D photonic crystal (PhC) structures in crystalline titania. The process is maskless and direct write. The slanted pore 3D structures with pore diameters of 100 nm having aspect ratio of 8 were formed. It is shown that chemical enhancement of titania removal up to 5.2 times is(More)
  • F Dell 'isola, L Rosa, C Wo~niak
  • 1996
The effect of a "pore-size" length-scale parameter 1 on compaction of grounds with fluid inclusions is studied. They are modelled as continua endowed with micro-structure by means of the macro-modelling procedure proposed in [2]. We show the dependence of field evolution equations on the micro-structure parameter l and compare our model with the homogenized(More)
Surface-enhanced Raman scattering (SERS) is attracting increasing interest for chemical sensing, surface science research and as an intriguing challenge in nanoscale plasmonic engineering. Several studies have shown that SERS intensities are increased when metal island film substrates are excited through a transparent base material, rather than directly(More)
Surface enhanced Raman scattering (SERS) was measured on periodic and randomly arranged patterns of Au nano-bricks (rectangular parallelepipeds). Resonant SERS conditions were investigated of a near-IR dye deposited on nanoparticles. Random mixtures of Au nano-bricks with different aspect ratio R showed stronger SERS enhancement as compared to periodic(More)