Lorenzo Moreno

Learn More
A neural network-based self-tuning controller is presented. The scheme of the controller is based on using a multilayer perceptron, or a set of them, as a self-tuner for a controller. The method proposed has the advantage that it is not necessary to use a combined structure of identification and decision, common in a standard self-tuning controller. The(More)
The objective of our research is to develop computer-based tools to automate the clinical evaluation of the electroencephalogram (EEG) and visual evoked potentials (VEP). This paper describes a set of solutions to support all the aspects regarding the standard procedures of the diagnosis in neurophysiology, including: (1) acquisition and real-time(More)
This paper presents a set of methods for helping in the analysis of signals with particular features that admit a symbolic description. The methodology is based on a general discrete model for a symbolic processing subsystem, which is fuzzyfied by means of a fuzzy inference system. In this framework a number of design problems have been approached. The(More)
In this paper, a methodological educational proposal based on constructivism and collaborative learning theories is described. The suggested approach has been successfully applied to a subject entitled ‘‘Computer Architecture and Engineering’’ in a Computer Science degree in the University of La Laguna in Spain. This methodology is supported by two tools:(More)
The objective of this research is to design a pattern recognition system based on a Fuzzy Finite State Machine (FFSM). We try to find an optimal FFSM with Genetic Algorithms (GA). In order to validate this system, the classifier has been applied to a real problem: distinction between normal and abnormal cells in cytological breast fine needle aspirate(More)