Lorenzo M. Polvani

Learn More
Horizontal temperature gradients are small in the tropical atmosphere, as a consequence of the smallness of the Coriolis parameter near the equator. This provides a strong constraint on both large-scale fluid dynamics and diabatic processes. This work is a step toward the construction of a balanced dynamical theory for the tropical circulation that is based(More)
The climate of the Atlantic sector exhibits considerable variability on a wide range of time scales. A substantial portion is associated with the North Atlantic Oscillation (NAO), a hemispheric meridional oscillation in atmospheric mass with centers of action near Iceland and over the subtropical Atlantic. NAO-related impacts on winter climate extend from(More)
[1] The sensitivity of the tropospheric extratropical circulation to thermal perturbations of the polar stratosphere is examined in a dry primitive equation general circulationmodel with zonally symmetric forcing and boundary conditions. For sufficiently strong cooling of the polar winter stratosphere, the winter-hemisphere tropospheric jet shifts polewards(More)
Stratospheric sudden warmings are the clearest and strongest manifestation of dynamical coupling in the stratosphere–troposphere system. While many sudden warmings have been individually documented in the literature, this study aims at constructing a comprehensive climatology: all major midwinter warming events are identified and classified, in both the(More)
This work documents how the midlatitude, eddy-driven jets respond to climate change using model output from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The authors consider separately the North Atlantic, the North Pacific, and the Southern Hemisphere jets. The analysis is not limited to annualmean changes in the latitude and speed of the(More)
The extratropical circulation response to cooling of the polar-winter stratosphere in a simple AGCM is investigated. The AGCM is a dry hydrostatic primitive equation model with zonally symmetric boundary conditions and analytically specified physics. It is found that, as the polar-winter stratosphere is cooled, the tropospheric jet shifts poleward. This(More)
An initial value problem for testing numerical models of the global shallow water equations is presented. This new test case is designed to address some of the difficulties that have recently been uncovered in the canonical test case suite of Williamson et al (1992). The new test case is simple to set up, yet able to generate a complex and realistic flow.(More)
It has recently been shown that extreme stratospheric events (ESEs) are followed by surface weather anomalies (for up to 60 days), suggesting that stratospheric variability might be used to extend weather prediction beyond current time scales. In this paper, attention is drawn away from the stratosphere to demonstrate that the originating point of ESEs is(More)
TheNCARCommunity Earth SystemModel (CESM) now includes an atmospheric component that extends in altitude to the lower thermosphere. This atmospheric model, known as the Whole Atmosphere Community Climate Model (WACCM), includes fully interactive chemistry, allowing, for example, a self-consistent representation of the development and recovery of the(More)
Although possibly the simplest model for the atmospheres of the giant planets, the turbulent forceddissipative shallow-water system in spherical geometry has not, to date, been investigated; the present study aims to fill this gap. Unlike the freely decaying shallow-water system described by Cho and Polvani, equilibrium states in the forced-dissipative(More)