Lorenzo Lodi

Learn More
This is the third of a series of articles reporting critically evaluated rotational– vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated(More)
A highly accurate, global dipole moment surface (DMS) is calculated for the water molecule using ab initio quantum chemistry methods. The new surface is named LTP2011 and is based on all-electron, internally contracted multireference configuration interaction, including size-extensivity corrections in the aug-cc-pCV6Z basis set. Dipoles are computed as(More)
New line lists for isotopically substituted water are presented. Most line positions were calculated from experimentally determined energy levels, while all line intensities were computed using an ab initio dipole moment surface. Transitions for which experimental energy levels are unavailable use calculated line positions. These line lists cover the range(More)
A joint experimental and first-principles quantum chemical study of the vibration-rotation states of the water molecule up to its first dissociation limit is presented. Triple-resonance, quantum state-selective spectroscopy is used to probe the entire ladder of water's stretching vibrations up to 19 quanta of OH stretch, the last stretching state below(More)
High-level ab initio electronic structure and variational nuclear motion computations are combined to simulate the spectrum of the water molecule at and above its first dissociation limit. Results of these computations are compared with the related state-selective multi-photon measurements of Grechko et al. [J. Chem. Phys. 138 (2010) 081 103]. Both measured(More)
A valence-only (V) dipole moment surface (DMS) has been computed for water at the internally contracted multireference configuration interaction level using the extended atom-centered correlation-consistent Gaussian basis set aug-cc-pV6Z. Small corrections to these dipole values, resulting from core correlation (C) and relativistic (R) effects, have also(More)
The molecular ion H(3)(+) is the simplest polyatomic and poly-electronic molecular system, and its spectrum constitutes an important benchmark for which precise answers can be obtained ab initio from the equations of quantum mechanics. Significant progress in the computation of the ro-vibrational spectrum of H(3)(+) is discussed. A new, global potential(More)
0009-2614/$ see front matter 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cplett.2013.03.007 ⇑ Corresponding author. E-mail addresses: oleg.boiarkin@epfl.ch (O.V. Boyarkin), j.tennyson@ucl.ac.uk (J. Tennyson). Oleg V. Boyarkin , Maxim A. Koshelev , Oleg Aseev , Pavel Maksyutenko , Thomas R. Rizzo , Nikolay F. Zobov , Lorenzo Lodi ,(More)
Given the large energy required for its electronic excitation, the most important properties of the water molecule are governed by its ground potential energy surface (PES). Novel experiments are now able to probe this surface over a very extended energy range, requiring new theoretical procedures for their interpretation. As part of this study, a new,(More)