Learn More
To acquire information on the relationships between structural maturation of proteins in the endoplasmic reticulum (ER) and their transport along the secretory pathway, we have analyzed the destiny of an assembly-defective form of the trimeric vacuolar storage glycoprotein phaseolin. In leaves of transgenic tobacco, where assembly-competent phaseolin is(More)
BACKGROUND Tonoplast intrinsic proteins (TIPs) are widely used as markers for vacuolar compartments in higher plants. Ten TIP isoforms are encoded by the Arabidopsis genome. For several isoforms, the tissue and cell specific pattern of expression are not known. RESULTS We generated fluorescent protein fusions to the genomic sequences of all members of the(More)
Tail-anchored (TA) proteins are bound to membranes by a hydrophobic sequence located very close to the C-terminus, followed by a short luminal polar region. Their active domains are exposed to the cytosol. TA proteins are synthesized on free cytosolic ribosomes and are found on the surface of every subcellular compartment, where they play various roles. The(More)
aERD2 and aSARl of Arabidopsis are functional homologs of yeast genes encoding proteins essential for endoplasmic reticulum (ER)-to-Golgi transport. The regulation of these secretory pathway genes in yeast, mammals, and plants is not known. High levels of expression of aERD2 and aSARl were observed in roots, flowers, and inflorescence stems, with the(More)
The endoplasmic reticulum (ER) in higher plants performs many important functions, yet our understanding of how its intricate network shape and dynamics relate to function is very limited. Recent work has begun to unpick key molecular players in the generation of the pleomorphic, highly dynamic ER network structure that pervades the entire cytoplasm. ER(More)
BACKGROUND Plants may represent excellent alternatives to classical heterologous protein expression systems, especially for the production of biopharmaceuticals and vaccine components. Modern vaccines are becoming increasingly complex, with the incorporation of multiple antigens. Approaches towards developing an HIV vaccine appear to confirm this, with a(More)
We have assessed the ability of the plant secretory pathway to handle the expression of complex heterologous proteins by investigating the fate of a hybrid immunoglobulin A/G in tobacco cells. Although plant cells can express large amounts of the antibody, a relevant proportion is normally lost to vacuolar sorting and degradation. Here we show that the(More)
The first evidence that plants represent a valid, safe and cost-effective alternative to traditional expression systems for large-scale production of antigens and antibodies was described more than 10 years ago. Since then, considerable improvements have been made to increase the yield of plant-produced proteins. These include the use of signal sequences to(More)
One of the most difficult obstacles to make biological sciences more quantitative is the lack of understanding the interplay of form and function. Each cell is full of complex-shaped objects, which moreover change their form over time. To tackle this problem, we suggest the use of geometric invariants that are able to produce precise reference points to(More)
The binding protein (BiP; a member of the heat-shock 70 family) is a major chaperone of the endoplasmic reticulum (ER). Interactions with BiP are believed to inhibit unproductive aggregation of newly synthesized secretory proteins during folding and assembly. In vitro, BiP has a preference for peptide sequences enriched in hydrophobic amino acids, which are(More)