Lorenzo Cangiano

Learn More
The spinal network coordinating locomotion in the lamprey serves as a model system, in which it has been possible to elucidate connectivity and cellular mechanisms using the isolated spinal cord. Locomotor burst activity alternates between the left and right side of a segment through reciprocal inhibition. We have recently shown that the burst generation(More)
Single motoneurons and pairs of a presynaptic reticulospinal axon and a postsynaptic motoneuron were recorded in the isolated lamprey spinal cord, to investigate the role of calcium-dependent K(+) channels (K(Ca)) during the afterhyperpolarization following the action potential (AHP), and glutamatergic synaptic transmission on the dendritic level. The AHP(More)
A fundamental question in vertebrate locomotion is whether distinct spinal networks exist that are capable of generating rhythmic output for each group of muscle synergists. In many vertebrates including the lamprey, it has been claimed that burst activity depends on reciprocal inhibition between antagonists. This question was addressed in the isolated(More)
The forebrain, brainstem and spinal cord contribution to the control of locomotion is reviewed in this article. The lamprey is used as an experimental model since it allows a detailed cellular analysis of the neuronal network underlying locomotion. The focus is on cellular mechanisms that are important for the pattern generation, as well as different types(More)
The slow afterhyperpolarization (sAHP) following the action potential is the main determinant of spike frequency regulation. The sAHP after single action potentials in neurons of the lamprey locomotor network is largely due to calcium-dependent K+channels (80%), activated by calcium entering the cell during the spike. The residual (20%) component becomes(More)
Synaptic competition is a basic feature of developing neural connections. To shed light on its dependence on the activity pattern of competing inputs, we investigated in vivo rat motoneuronal firing during late embryonic and early neonatal life, when synapse elimination occurs in muscle. Electromyographic recordings with floating microelectrodes from(More)
This study investigates the role of two different HCN channel isoforms in the light response of the outer retina. Taking advantage of HCN-deficient mice models and of in vitro (patch-clamp) and in vivo (ERG) recordings of retinal activity we show that HCN1 and HCN2 channels are expressed at distinct retinal sites and serve different functions. Specifically,(More)
The organization of the minimal neuronal substrate capable of generating locomotor rhythmicity in vertebrates is investigated in several species, with an emphasis on identifying evolutionary-conserved features. In lamprey, an eel-like lower vertebrate that swims by undulatory movements of the body, the network has been identified as a recurrent network of(More)
Research on photoreceptors has led to important insights into how light signals are detected and processed in the outer retina. Most information about photoreceptor function, however, comes from lower vertebrates. The large majority of mammalian studies are based on suction pipette recordings of outer segment currents, a technique that doesn't allow(More)
The intrinsic function of the spinal network that generates locomotion can be studied in the isolated brainstem-spinal cord of the lamprey, a lower vertebrate. The motor pattern underlying locomotion can be elicited in the isolated spinal cord. The network consists of excitatory glutamatergic and inhibitory glycinergic interneurones with known connectivity.(More)