Lorenzo Bruzzone

Learn More
This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines (SVMs). First, we propose a theoretical discussion and experimental analysis aimed at understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces. Then, we assess the effectiveness of SVMs with(More)
This paper addresses pattern classification in the framework of domain adaptation by considering methods that solve problems in which training data are assumed to be available only for a source domain different (even if related) from the target domain of (unlabeled) test data. Two main novel contributions are proposed: 1) a domain adaptation support vector(More)
This paper presents the framework of kernel-based methods in the context of hyperspectral image classification, illustrating from a general viewpoint the main characteristics of different kernel-based approaches and analyzing their properties in the hyperspectral domain. In particular, we assess performance of regularized radial basis function neural(More)
In this paper, we present a novel automatic and unsupervised change-detection approach specifically oriented to the analysis of multitemporal single-channel single-polarization synthetic aperture radar (SAR) images. This approach is based on a closed-loop process made up of three main steps: 1) a novel preprocessing based on a controlled adaptive iterative(More)
A successful method for removing artifacts from electroencephalogram (EEG) recordings is Independent Component Analysis (ICA), but its implementation remains largely user-dependent. Here, we propose a completely automatic algorithm (ADJUST) that identifies artifacted independent components by combining stereotyped artifact-specific spatial and temporal(More)
This paper proposes a novel pixel-based system for the supervised classification of very high geometrical (spatial) resolution images. This system is aimed at obtaining accurate and reliable maps both by preserving the geometrical details in the images and by properly considering the spatialcontext information. It is made up of two main blocks: 1) a novel(More)
This paper introduces a semisupervised classification method that exploits both labeled and unlabeled samples for addressing ill-posed problems with support vector machines (SVMs). The method is based on recent developments in statistical learning theory concerning transductive inference and in particular transductive SVMs (TSVMs). TSVMs exploit specific(More)
In this paper, a novel automatic approach to the unsupervised identification of changes in multitemporal remote-sensing images is proposed. This approach, unlike classical ones, is based on the formulation of the unsupervised change-detection problem in terms of the Bayesian decision theory. In this context, an adaptive semiparametric technique for the(More)
This paper investigates different batch mode active learning techniques for the classification of remote sensing (RS) images with support vector machines (SVMs). This is done by generalizing to multiclass problems techniques defined for binary classifiers. The investigated techniques exploit different query functions, which are based on the evaluation of(More)
This paper analyzes the classification of hyperspectral remote sensing images with linear discriminant analysis (LDA) in the presence of a small ratio between the number of training samples and the number of spectral features. In these particular ill-posed problems, a reliable LDA requires one to introduce regularization for problem solving. Nonetheless, in(More)