Learn More
— We characterize the dynamical behavior of continuous-time, Markovian quantum systems with respect to a subsystem of interest. Markovian dynamics describes a wide class of open quantum systems of relevance to quantum information processing, subsystem encodings offering a general pathway to faithfully represent quantum information. We provide explicit(More)
We propose a general framework for investigating a large class of stabilization problems in Markovian quantum systems. Building on the notions of invariant and attractive quantum subsystem, we characterize attractive subspaces by exploring the structure of the invariant sets for the dynamics. Our general analysis results are exploited to assess the ability(More)
We introduce a general operational characterization of information-preserving structures-encompassing noiseless subsystems, decoherence-free subspaces, pointer bases, and error-correcting codes-by demonstrating that they are isometric to fixed points of unital quantum processes. Using this, we show that every information-preserving structure is a matrix(More)
We demonstrate the protection of one bit of quantum information against all collective noise in three nuclear spins. Because no subspace of states offers this protection, the quantum bit was encoded in a proper noiseless subsystem. We therefore realize a general and efficient method for protecting quantum information. Robustness was verified for a full set(More)
In this essay we discuss the issue of quantum information and recent nuclear magnetic resonance (NMR) experiments. We explain why these experiments should be regarded as quantum information processing (QIP) despite the fact that, in present liquid state NMR experiments, no entanglement is found. We comment on how these experiments contribute to the future(More)
An extension of the product operator formalism of NMR is introduced, which uses the Hadamard matrix product to describe many simple spin 1/2 relaxation processes. The utility of this formalism is illustrated by deriving NMR gradient-diffusion experiments to simulate several decoherence models of interest in quantum information processing, along with their(More)
—We consider finite-dimensional Markovian open quantum systems, and characterize the extent to which time-independent Hamiltonian control may allow to stabilize a target quantum state or subspace and optimize the resulting convergence speed. For a generic Lindblad master equation, we introduce a dissipation-induced decomposition of the associated Hilbert(More)
Spin chains have been proposed as quantum wires in many quantum-information processing architectures. Coherent transmission of quantum information in spin chains over short distances is enabled by their internal dynamics, which drives the transport of single-spin excitations in perfectly polarized chains. Given the practical challenge of preparing the chain(More)
The 19 F spins in a crystal of fluorapatite have often been used to experimentally approximate a one-dimensional spin system. Under suitable multipulse control, the nuclear-spin dynamics may be modeled to first approximation by a double-quantum one-dimensional Hamiltonian, which is analytically solvable for nearest-neighbor couplings. Here, we use(More)