Lorenza Tacchini

Learn More
Hepatocyte growth factor (HGF), a multifunctional cytokine of mesenchymal origin, activates the DNA binding of hypoxia inducible factor-1 (HIF-1) in the HepG2 cell line: the activated complex contained the inducible alpha subunit. An increased expression of HIF-1alpha (mRNA and nuclear protein levels) was observed. To investigate the molecular basis of the(More)
Ferritin, by regulating the "free" intracellular iron pool, controls iron-catalyzed generation of reactive oxygen species, but its role in oxidative damage is still unclear. We show that ferritin synthesis is significantly stimulated in the liver of rats subjected to oxidative stress by treatment with phorone, a glutathione-depleting drug. RNA-bandshift(More)
Iron-catalyzed production of reactive oxygen species is a cause of liver injury after ischemia/reperfusion (I/R). The aim of the present study was to address the regulation of transferrin receptor (TfR), which mediates cellular iron uptake, during I/R. The molecular mechanisms controlling TfR gene expression in vivo during I/R of rat liver were investigated(More)
Inflammation generates various changes in body iron homeostasis, including iron sequestration in the reticuloendothelial system with ensuing hypoferremia and anemia of chronic disease. Increased iron accumulation is caused by hepcidin-mediated down-regulation of the iron export protein ferroportin and higher iron uptake. However, enhanced iron acquisition(More)
The tight relationship between oxygen and iron prompted us to investigate whether the expression of transferrin receptor (TfR), which mediates cellular iron uptake, is regulated by hypoxia. In Hep3B human hepatoma cells incubated in 1% O(2) or treated with CoCl(2), which mimics hypoxia, we detected a 3-fold increase of TfR mRNA despite a decrease of iron(More)
Treatment with iron chelators mimics hypoxic induction of the hypoxia inducible factor (HIF-1) which activates transcription by binding to hypoxia responsive elements (HRE). We investigated whether HIF-1 is involved in transcriptional activation of the transferrin receptor (TfR), a membrane protein which mediates cellular iron uptake, in response to iron(More)
Post-ischaemic reperfusion increases the level of the major heat-shock (stress) protein hsp 70 and of its mRNA by transcriptional mechanisms, and activates the binding of the heat-shock factor HSF to the consensus sequence HSE. In common with CoCl2 treatment, post-ischaemic reperfusion increases the level of haem oxygenase mRNA, an indicator of oxidative(More)
Steady-state levels of messenger RNA (mRNA) for different members of the heat-shock protein 70 gene family were studied in rat livers reperfused after non-necrogenic ischemia. The expression of constitutive hsc 73 gene decreases during ischemia, returns to normal upon reperfusion, and increases 4 hr after restoration of blood flow. Reperfusion induces the(More)
The expression of hsp70-the inducible member of the corresponding heat shock gene family-of the oxidative stress marker gene heme oxygenase (HOx), and of the immediate early response genes c-fos and c-jun has been studied in FAO hepatocarcinoma cells depleted of polyamines and exposed to heat shock. Depletion of polyamines was obtained in short-term(More)
Iron may be important in catalyzing excessive production of reactive oxygen species (ROS). Cellular iron homeostasis is regulated by iron regulatory proteins (IRPs), which bind to iron-responsive elements (IRE) of mRNAs for ferritin and transferrin receptor (TfR) modulating iron uptake and sequestration, respectively. Although iron is the main regulator of(More)