Learn More
A fundamental function of epithelia and endothelia is to separate different compartments within the organism and to regulate the exchange of substances between them. The tight junction (TJ) constitutes the barrier both to the passage of ions and molecules through the paracellular pathway and to the movement of proteins and lipids between the apical and the(More)
Extracellular Ca2+ triggers assembly and sealing of tight junctions (TJs) in MDCK cells. These events are modulated by G-proteins, phospholipase C, protein kinase C (PKC), and calmodulin. In the present work we observed that 1,2-dioctanoylglycerol (diC8) promotes the assembly of TJ in low extracellular Ca2+, as evidenced by translocation of the(More)
Upon transferring confluent monolayers of Madin-Darby canine kidney (MDCK) cells from a low-Ca2+ medium (1-5 microM) to one with 1.8 mM Ca2+ (Ca switch), tight junctions (TJs) assemble and seal, and transepithelial electrical resistance (TER) develops in 4-5 h, presumably through exocytotic fusion that incorporates junctional components to the surface(More)
The making and sealing of a tight junction (TJ) requires cell-cell contacts and Ca2−, and can be gauged through the development of transepithelial electrical resistance (TER) and the accumulation of ZO-1 peptide at the cell borders. We observe that pertussis toxin increases TER, while AIF3 and carbamil choline (carbachol) inhibit it, and(More)
We have previously shown that upon transferring confluent monolayers of Madin-Darby canine kidney (MDCK) cells from low- to normal-Ca2+ medium, cytosolic Ca2+ increases and tight junctions (TJs) assemble and seal, but the increase in cytosolic Ca2+ does not seem to be necessary for junction formation. In the present work we establish that these are in fact(More)
Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A,(More)
ZO-1, ZO-2 and ZO-3 are tight junction (TJ)-associated proteins that belong to the MAGUK family. In addition to the presence of the characteristic MAGUK modules (PDZ, SH3 and GK), ZOs have a distinctive carboxyl terminal with splicing domains, acidic- and proline-rich regions. The modular organization of these proteins allows them to function as scaffolds,(More)
BACKGROUND Tight junctions play a critical role in tubular function. In mammalian kidney, the transepithelial electrical resistance and the complexity of the tight junction increase from the proximal to the collecting tubule. The differential expression of three tight junction proteins, ZO-1, ZO-2, and occludin, along isolated rabbit renal tubules is(More)
The acquisition of a cancerous phenotype by epithelial cells involves the disruption of intercellular adhesions. The reorganization of the E-cadherin/beta-catenin complex in adherens junctions during cell transformation is widely recognized. Instead the implication of tight junctions (TJs) in this process is starting to be unraveled. The aim of this article(More)
Synthesis and assembly of tight junctions are studied in monolayers of MDCK cells plated at a density sufficient for confluence, allowed to attach for 1 hr, and transferred to fresh media without cells containing or not Ca2+, 20 hr later, while monolayers with Ca2+ have fully developed junctions that confer an electrical resistance across of 346±51 Ω cm2,(More)