Lorenz Weiland

Learn More
For Gaussian multiple-input multiple-output (MIMO) relay channels with partial decode-and-forward, the optimal type of input distribution is still an open question in general. Recent research has revealed that in some other scenarios with unknown optimal input distributions (e.g., interference channels), improper (i.e., noncircular) Gaussian distributions(More)
For the Gaussian MIMO relay channel, we consider rates that can be achieved with the relay using the partial decode-and-forward (PDF) scheme, which is a generalization of the decode-and-forward (DF) scheme. Since for the general case the optimal channel input distribution for the PDF strategy is unknown, the maximum PDF rate for the Gaussian relay channel(More)
In this paper, we consider achievable partial decode-and-forward (PDF) rates for the Gaussian multiple-input multiple-output (MIMO) relay channel. The PDF scheme generalizes the decode-and-forward (DF) scheme as it allows to optimize the amount of information that is transmitted in cooperation with the relay. For the Gaussian channel case, the optimal(More)
Proper (i.e., circularly symmetric) Gaussian signals are known to be capacity-achieving in Gaussian multiple-input multiple-output (MIMO) broadcast channels with proper noise in the sense that the sum rate capacity under a sum power constraint is achievable with proper Gaussian signaling. In this paper, we generalize this statement by proving that the(More)
In this paper, we consider the partial decode-and-forward (PDF) strategy for the Gaussian multiple-input multiple-output (MIMO) relay channel. The input distribution that maximizes the achievable PDF rate for this channel is still unknown in general. Therefore, it has so far only been possible to determine the maximum PDF rate if the best PDF strategy is(More)
This paper considers the partial decode-and-forward (PDF) strategy for the Gaussian multiple-input multiple-output (MIMO) relay channel. Unlike for the decode-and-forward (DF) strategy or point-to-point (P2P) transmission, for which Gaussian channel inputs are known to be optimal, the input distribution that maximizes the achievable PDF rate for the(More)
Two uniform linear arrays with inexactly known relative positions shall be used for coherent direction of arrival estimation. We show that in the narrowband case the estimation of the displacement parameter is well posed if the number of sources is known. Furthermore, we propose a fast registration method that estimates the unknown displacement parameter(More)
This paper considers the so-called partial decode-and-forward (DF) strategy for the Gaussian multiple-input multiple-output (MIMO) relay channel. Unlike for the DF strategy or point-to-point (P2P) transmission from source to destination, for which Gaussian channel inputs are known to maximize the achievable rates, the input distribution that attains the(More)