Lorenz Romaner

Learn More
Self-assembled monolayers (SAMs) of organic molecules provide an important tool to tune the work function of electrodes in plastic electronics and significantly improve device performance. Also, the energetic alignment of the frontier molecular orbitals in the SAM with the Fermi energy of a metal electrode dominates charge transport in single-molecule(More)
Self-assembled monolayers (SAMs) of organic molecules generally modify the surface properties when covalently linked to substrates. In organic electronics, SAMs are used to fine-tune the work functions of inorganic electrodes, thereby minimizing the energy barriers for injection or extraction of charge carriers into or out of an active organic layer; a(More)
Interface energetics are of fundamental importance in organic and molecular electronics. By combining complementary experimental techniques and first-principles calculations, we resolve the complex interplay among several interfacial phenomena that collectively determine the electronic structure of the strong electron acceptor(More)
The energetics at the interfaces between metal and monolayers of covalently bound organic molecules is studied theoretically. Despite the molecules under consideration displaying very different frontier orbital energies, the highest occupied molecular levels are found to be pinned at a constant energy offset with respect to the metal Fermi level. In(More)
The electronic structure of mixed self-assembled monolayers (SAMs) on Au(111) surfaces is modeled using slab-type density-functional theory calculations. The studied molecules have a dipolar character induced by polar and electron donating or accepting tail-group substituents. The resulting electronic structure of mixed layers is found to differ(More)
Well-ordered and oriented monolayers of conjugated organic molecules can offer new perspectives on surface bonding. We will demonstrate the importance of the momentum distribution, or symmetry, of the adsorbate molecules' π orbitals in relation to the states available for hybridization at the metal surface. Here, the electronic band structure of the first(More)
During the last years, self-assembled organic nanostructures have been recognized as a proper fundament for several electrical and optical applications. In particular, phenylenes deposited on muscovite mica have turned out to be an outstanding material combination. They tend to align parallel to each other forming needlelike structures. In that way, they(More)
Density functional theory (DFT) calculations based on band structure are used to investigate the electromechanical properties of a molecular junction consisting of a dithiolbenzene molecule sandwiched between two gold slabs. This represents a prototypical system for the field of molecular electronics; such a system has previously been studied in(More)
Despite exhibiting the highest melting point of all metals, the technological use of tungsten is hampered by its room-temperature brittleness. Alloying with Re significantly ductilizes the material which has been assigned to modified properties of the 1/2(111) screw dislocation. Using density functional theory, we show that alloying induces a transition(More)
Conjugated molecules with a saturated alkyl linker between a thiol docking group and the pi-conjugated core have been shown to form self-assembled monolayers (SAMs) with a high degree of long-range order and uniformity. Additionally, pronounced odd-even effects have been observed in a number of properties characterizing these SAMs. We focus on(More)