Learn More
Drug molecules consist of a few tens of atoms connected by covalent bonds. How many such molecules are possible in total and what is their structure? This question is of pressing interest in medicinal chemistry to help solve the problems of drug potency, selectivity, and toxicity and reduce attrition rates by pointing to new molecular series. To better(More)
The chemical universe database GDB-13, which enumerates 977 million organic molecules up to 13 atoms of C, N, O, S and Cl following simple chemical stability and synthetic feasibility rules, represents a vast reservoir for new fragments. GDB-13 was classified using the MQN-system discussed in the preceding paper for the analysis of PubChem fragments. Two(More)
The database PubChem was classified using 42 integer value descriptors of molecular structure, here called molecular quantum numbers (MQNs), which count atoms and bond types, polar groups, and topological features. Principal component analysis of the MQN data set shows that PubChem compounds occupy a partially filled elliptical cone in the (PC1,PC2,PC3)(More)
The 4.5 million organic molecules with up to 20 non-hydrogen atoms in PubChem were analyzed using the MQN-system, which consists in 42 integer value descriptors of molecular structure. The 42-dimensional MQN-space was visualised by principal component analysis and representation of the (PC1, PC2), (PC1, PC3) and (PC2, PC3) planes. The molecules were(More)
The degree and the origins of quantitative variability of most human plasma proteins are largely unknown. Because the twin study design provides a natural opportunity to estimate the relative contribution of heritability and environment to different traits in human population, we applied here the highly accurate and reproducible SWATH mass spectrometry(More)
Clinical specimens are each inherently unique, limited and nonrenewable. Small samples such as tissue biopsies are often completely consumed after a limited number of analyses. Here we present a method that enables fast and reproducible conversion of a small amount of tissue (approximating the quantity obtained by a biopsy) into a single, permanent digital(More)
The chemical universe database GDB-17 contains 166.4 billion molecules of up to 17 atoms of C, N, O, S, and halogens obeying rules for chemical stability, synthetic feasibility, and medicinal chemistry. GDB-17 was analyzed using 42 integer value descriptors of molecular structure which we term "Molecular Quantum Numbers" (MQN). Principal component analysis(More)
The chemical universe database GDB-13 enumerates 977 million organic molecules up to 13 atoms of C, N, O, Cl, and S that are virtually possible following simple rules for chemical stability and synthetic feasibility. Analogs of nicotine were identified in GDB-13 using the city-block distance in MQN-space (CBD(MQN)) as a similarity measure, combined with a(More)
  • 1