Learn More
The main obstacle for the evolution of cooperation is that natural selection favors defection in most settings. In the repeated prisoner's dilemma, two individuals interact several times, and, in each round, they have a choice between cooperation and defection. We analyze the evolutionary dynamics of three simple strategies for the repeated prisoner's(More)
We investigate the long-run behavior of a stochastic replicator process, which describes game dynamics for a symmetric two-player game under aggregate shocks. We establish an averaging principle that relates time averages of the process and Nash equilibria of a suitably modified game. Furthermore, a sufficient condition for tran-sience is given in terms of(More)
Evolutionary game dynamics in finite populations can be described by a frequency dependent, stochastic Wright-Fisher process. We consider a symmetric game between two strategies, A and B. There are discrete generations. In each generation, individuals produce offspring proportional to their payoff. The next generation is sampled randomly from this pool of(More)
In stochastic dynamical systems, different concepts of stability can be obtained in different limits. A particularly interesting example is evolutionary game theory, which is traditionally based on infinite populations, where strict Nash equilibria correspond to stable fixed points that are always evolutionarily stable. However, in finite populations(More)
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Abstract We analyze a class of imitation dynamics with mutations for games with any(More)
This paper proposes and analyzes a model of stochastic evolution in finite populations. The expected motion in our model resembles the standard replicator dynamic when the population is large, but is qualitatively different when the population size is small, due to the difference between maximizing payoff and maximizing relative payoff. Moreover, even in(More)
The repeated Prisoner's Dilemma is usually known as a story of tit-for-tat (TFT). This remarkable strategy has won both of Robert Axelrod's tournaments. TFT does whatever the opponent has done in the previous round. It will cooperate if the opponent has cooperated, and it will defect if the opponent has defected. But TFT has two weaknesses: (i) it cannot(More)