Learn More
Motivation OLAP (On-line Analytical Processing) allows analyzing huge amounts of data for decision-making. Multidimensional data are seen as data cubes (DC). Research Problem Sometimes we cannot afford to wait until the next DW refreshment. We need data now, as it is. This represents a paradigm shift from traditional ETL. Semantic Web and OLAP tools and(More)
The web is changing the way in which data warehouses are designed and exploited. Nowadays, for many data analysis tasks, data contained in a conventional data warehouse may not suffice, and external data sources, like the web, can provide useful multidimensional information. Also, large repositories of semantically annotated data are becoming available on(More)
On-Line Analytical Processing (OLAP) tools allow querying large multidimensional (MD) databases called data warehouses (DW). OLAP-style data analysis over the semantic web (SW) is gaining momentum, and thus SW technologies will be needed to model, manipulate, and share MD data. To achieve this, the definition of a vocabulary that adequately represents OLAP(More)
The web is changing the way in which data warehouses are designed, used, and queried. With the advent of initiatives such as Open Data and Open Government, organizations want to share their multidimensional data cubes and make them available to be queried online. The RDF data cube vocabulary (QB), the W3C standard to publish statistical data in RDF,(More)
The web is changing the way in which data warehouses are designed, used, and queried. With the advent of initiatives such as Open Data and Open Government, organizations want to share their multidimensional data cubes and make them available to be queried online. The RDF data cube vocabulary (QB), the W3C standard to publish statistical data in RDF,(More)