Lopes Gomes

Learn More
OBJECTIVE This work presents a novel approach for the prediction of mortality in intensive care units (ICUs) based on the use of adverse events, which are defined from four bedside alarms, and artificial neural networks (ANNs). This approach is compared with two logistic regression (LR) models: the prognostic model used in most of the European ICUs, based(More)
OBJECTIVE The main intensive care unit (ICU) goal is to avoid or reverse the organ failure process by adopting a timely intervention. Within this context, early identification of organ impairment is a key issue. The sequential organ failure assessment (SOFA) is an expert-driven score that is widely used in European ICUs to quantify organ disorder. This work(More)
This paper introduces the INTCare system, an intelligent information system based on a completely automated Knowledge Discovery process and on the Agents paradigm. The system was designed to work in Hospital Intensive Care Units, supporting the physicians' decisions by means of prognostic Data Mining models. In particular, these techniques were used to(More)
In the past years, the Clinical Data Mining arena has suffered a remarkable development, where intelligent data analysis tools, such as Neural Networks, have been successfully applied in the design of medical systems. In this work, Neural Networks are applied to the prediction of organ dysfunction in Intensive Care Units. The novelty of this approach comes(More)
  • 1