Learn More
G-protein-coupled receptor (GPCR) activity gradients evoke important cell behavior but there is a dearth of methods to induce such asymmetric signaling in a cell. Here we achieved reversible, rapidly switchable patterns of spatiotemporally restricted GPCR activity in a single cell. We recruited properties of nonrhodopsin opsins--rapid deactivation, distinct(More)
There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration.(More)
G-protein βγ subunits translocate reversibly from the plasma membrane to internal membranes on receptor activation. Translocation rates differ depending on the γ subunit type. There is limited understanding of the role of the differential rates of Gβγ translocation in modulating signaling dynamics in a cell. Bifurcation analysis of the calcium oscillatory(More)
G-protein-coupled receptors (GPCRs) stimulate signaling networks that control a variety of critical physiological processes. Static information on the map of interacting signaling molecules at the basis of many cellular processes exists, but little is known about the dynamic operation of these networks. Here we focus on two questions. First, Is the network(More)
  • 1