Learn More
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast(More)
1. In outside-out patches excised from human embryonic kidney (HEK) 293 cells expressing Ca2+-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptor (AMPAR) channels, currents activated by 1 ms glutamate pulses at negative membrane potentials facilitated during and following a repetitive (2 to 100 Hz) agonist application. The degree of(More)
The structure of the NMDA receptor channel M2 segment was investigated by probing the extracellular and cytoplasmic faces of cysteine-substituted NR1-NR2C channels with charged sulfhydryl-specific reagents. The pattern of accessible positions suggests that the M2 segment forms a channel-lining loop originating and ending on the cytoplasmic side of the(More)
1. The molecular determinants for the narrow constriction of recombinant N-methyl-D-aspartate (NMDA) receptor channels composed of wild-type and mutant NR1- and NR2A-subunits were studied in Xenopus oocytes. 2. The relative permeability of differently sized organic cations was used as an indicator of the size of the narrow constriction. From measured(More)
We characterized inhibition of N-type Ca2+ and M current K+ channels in rat superior cervical ganglion neurons by angiotensin II (angioII) using the patch clamp. Of 120 neurons, 97 showed inhibition of ICa (mean 32%), which was slow in onset and very slow to reverse under whole-cell recording conditions. This inhibition was blocked by the AT1 receptor(More)
The ligand binding domain of glutamate receptors (GluRs) has 2-fold rotational symmetry. The structure including the symmetry of the GluR ion channel remains undefined. Here we used substituted cysteines in the pore-lining M3 segment of the AMPAR GluR-A subunit and various cysteine-reactive agents to study the structure of the channel during gating. We find(More)
Ionotropic glutamate receptors are ligand-gated ion channels that mediate rapid information transfer at most excitatory synapses in the brain. Crystal structures are now available for the ligand-binding domain, but the structure of the ion channel itself remains unknown. The core of the ion channel shares structural features with an inverted K(+) channel.(More)
1. The voltage-dependent block of N-methyl-D-aspartate (NMDA) receptor channels by extracellular Mg2+ is a critical determinant of its contribution to CNS synaptic physiology. The function of the narrow constriction of the channel in determining the block was investigated by analysing the effects of a set different amino acid substitutions at exposed(More)
1. N-methyl-D-aspartate (NMDA) receptor channels are blocked by intracellular Mg2+ in a voltage-dependent manner. Amino acid residues positioned at or near the narrow constriction that interact with intracellular Mg2+ were identified in recombinant NR1-NR2A channels expressed in Xenopus oocytes or human embryonic kidney (HEK) 293 cells. 2. In the absence of(More)
The channels associated with glutamate receptor (GluR) subtypes, namely N-methyl-D-aspartate receptors (NMDARs), and Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) and kainate receptors (KARs), are to varying degrees permeable to Ca(2+). To compare the mechanism of Ca(2+) influx, we measured Ca(2+) permeability(More)