Lonnie O'Neal Ingram

Learn More
Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were(More)
The resistance of polylactide to biodegradation and the physical properties of this polymer can be controlled by adjusting the ratio of L-lactic acid to D-lactic acid. Although the largest demand is for the L enantiomer, substantial amounts of both enantiomers are required for bioplastics. We constructed derivatives of Escherichia coli W3110 (prototrophic)(More)
Bioethanol production from lignocellulosic raw-materials requires the hydrolysis of carbohydrate polymers into a fermentable syrup. During the hydrolysis of hemicellulose with dilute acid, a variety of toxic compounds are produced such as soluble aromatic aldehydes from lignin and furfural from pentose destruction. In this study, we have investigated the(More)
Low concentrations of furfural are formed as a side product during the dilute acid hydrolysis of hemicellulose. Growth is inhibited by exposure to furfural but resumes after the complete reduction of furfural to the less toxic furfuryl alcohol. Growth-based selection was used to isolate a furfural-resistant mutant of ethanologenic Escherichia coli LY180,(More)
Hemicellulose residues can be hydrolyzed into a sugar syrup using dilute mineral acids. Although this syrup represents a potential feedstock for biofuel production, toxic compounds generated during hydrolysis limit microbial metabolism. Escherichia coli LY01, an ethanologenic biocatalyst engineered to ferment the mixed sugars in hemicellulose syrups, has(More)
The effects of alcohols of different chain lengths on the fatty acid composition of Escherichia coli K-12 have been examined. My results indicate that these cells radically change their fatty acid composition when grown in the presence of alcohols. These changes represent an adaptive membrane alteration compensating for the direct physicochemical(More)
Escherichia coli TC44, a derivative of W3110, was engineered for the production of pyruvate from glucose by combining mutations to minimize ATP yield, cell growth, and CO2 production (DeltaatpFH DeltaadhE DeltasucA) with mutations that eliminate acetate production [poxB::FRT (FLP recognition target) DeltaackA] and fermentation products (DeltafocA-pflB(More)
The genes encoding essential enzymes of the fermentative pathway for ethanol production in Zymomonas mobilis, an obligately ethanologenic bacterium, were inserted into Escherichia coli under the control of a common promoter. Alcohol dehydrogenase II and pyruvate decarboxylase from Z. mobilis were expressed at high levels in E. coli, resulting in increased(More)
Genetically engineered Escherichia coli KO11 is capable of efficiently producing ethanol from all sugar constituents of lignocellulose but lacks the high ethanol tolerance of yeasts currently used for commercial starch-based ethanol processes. Using an enrichment method which selects alternatively for ethanol tolerance during growth in broth and for ethanol(More)
The hydrolysis of hemicellulose to monomeric sugars by dilute acid hydrolysis is accompanied by the production of inhibitors that retard microbial fermentation. Treatment of hot hydrolysate with Ca(OH)(2) (overliming) is an effective method for detoxification. Using ethanologenic Escherichia coli LY01 as the biocatalyst, our results indicate that the(More)