Longqing Cong

  • Citations Per Year
Learn More
By utilizing the vector nature of light as well as the inherent anisotropy of artificial meta-atoms, we investigate parity time symmetry breaking in polarization space using a metasurface with anisotropic absorption, whose building blocks consist of two orthogonally orientated meta-atoms with the same resonant frequency but different loss coefficients. By(More)
Fano resonances offer exciting features in enhancing the non-linearity and sensing capabilities in metamaterial systems. An active photoswitching of Fano resonances in a terahertz metadevice at low optical pump powers is demonstrated, which signifies the extreme sensitivity of the high-quality-factor resonant electric field to the external light(More)
It is extremely challenging to control the phase of light at will in free space. Here, Pancharatnam-Berry-phase-enabled, tunable phase control of free-space light is experimentally demonstrated in an ultrathin flexible dispersion-free metadevice. This metadevice enables the broadband conversion of linearly polarized light into any desired output(More)
Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic(More)
Recent advances in graphene photonics reveal promising applications in the technologically important terahertz spectrum, where graphene-based active terahertz metamaterial modulators have been experimentally demonstrated. However, the sensitivity of the atomically thin graphene monolayer towards sharp Fano resonant terahertz metasurfaces remains unexplored.(More)
A toroidal dipole in metasurfaces provides an alternate approach for the excitation of high-Q resonances. In contrast to conventional multipoles, the toroidal dipole interaction strength depends on the time derivative of the surrounding electric field. A characteristic feature of toroidal dipoles is tightly confined loops of oscillating magnetic field that(More)
Controlling the phase of local radiation by using exotic metasurfaces has enabled promising applications in a diversified set of electromagnetic wave manipulation such as anomalous wavefront deflection, flat lenses, and holograms. Here, we theoretically and experimentally demonstrate an active phase transition in a micro-electromechanical system-based(More)
Experimental tests are presented to investigate the stress effect on terahertz (THz) waves with a THz time-domain spectroscopy system. Through the Jones matrix method, an experimental principle is derived according to the experimental system. Experimental results indicate the linear relationship between a polytetrafluoroethylene refractive index and applied(More)
  • 1