Learn More
Graphene has emerged as a promising material for active plasmonic devices in the mid-infrared (MIR) region owing to its fast tunability, strong mode confinement, and long-lived collective excitation. In order to realize on-chip graphene plasmonics, several types of graphene plasmonic waveguides (GPWGs) have been investigated and most of them are with(More)
Graphene is well-known as a two-dimensional sheet of carbon atoms arrayed in a honeycomb structure. It has some unique and fascinating properties, which are useful for realizing many optoelectronic devices and applications, including transistors, photodetectors, solar cells, and modulators. To enhance light-graphene interactions and take advantage of its(More)
Graphene is attractive for realizing optoelectronic devices, including photodetectors because of the unique advantages. It can easily co-work with other semiconductors to form a Schottky junction, in which the photo-carrier generated by light absorption in the semiconductor might be transported to the graphene layer efficiently by the build-in field. It(More)
Thermo-optic effect plays an important role and has been paid intensive attention for realizing switchable/tunable photonic integrated devices. In particular, it is possible to realize energy-efficient thermally switchable/tunable photonic integrated devices on silicon because of the high thermo-optical coefficient of silicon material. Recently we realized(More)
Hard-to-treat cancers are closely relative to uncontrolled cell proliferation, invasion, and metastasis. Assessing proliferation and invasion properties of tumor cells both in vitro and in vivo is especially important for acquiring reliable information for cancer pathogenesis, drug screening, and therapeutic effect evaluation. Herein, we developed a(More)
  • 1