Learn More
A lobule-mimetic cell-patterning technique for on-chip reconstruction of centimetre-scale liver tissue of heterogeneous hepatic and endothelial cells via an enhanced field-induced dielectrophoresis (DEP) trap is demonstrated and reported. By mimicking the basic morphology of liver tissue, the classic hepatic lobule, the lobule-mimetic-stellate-electrodes(More)
A novel and disposable microchip (K-kit) with SiO(2) nano-membranes was developed and used as a specimen kit for in situ imaging of living organisms in an aqueous condition using transmission electron microscopy (TEM) without equipment modification. This K-kit enabled the successful TEM observation of living Escherichia coli cells and the tellurite(More)
This study investigated the structural and mechanical properties of Klebsiella pneumoniae type 3 fimbriae, which constitute a known virulence factor for the bacterium. Transmission electron microscopy and optical tweezers were used to understand the ability of the bacterium to survive flushes. An individual K. pneumoniae type 3 fimbria exhibited a(More)
Multicellular spheroids (MCS), formed by self-assembly of single cells, are commonly used as a three-dimensional cell culture model to bridge the gap between in vitro monolayer culture and in vivo tissues. However, current methods for MCS generation and analysis still suffer drawbacks such as being labor-intensive and of poor controllability, and are not(More)
Recent evidence demonstrated that conformational changes of the integrin during receptor activation affected its binding to extracellular matrix; however, experimental assessment of ligand-receptor binding following the initial molecular interaction has rarely been carried out at a single-molecule resolution. In the present study, laser tweezers were used(More)
We develop light-driven optoelectronic tweezers based on the organic photoconductive material titanium oxide phthalocyanine. These tweezers function based on negative dielectrophoresis (nDEP). The dynamic manipulation of a single microparticle and cell patterning are demonstrated by using this light-driven optoelectronic DEP chip. The adaptive light(More)
Since their invention in 1986, optical tweezers have become a popular manipulation and force measurement tool in cellular and molecular biology. However, until recently there has not been a sophisticated model for optical tweezers on trapping cells in the ray-optics regime. We present a model for optical tweezers to calculate the optical force upon a(More)
The Klebsiella pneumoniae type 3 fimbriae are mainly composed of MrkA pilins that assemble into a helixlike filament. This study determined the biomechanical properties of the fimbriae and analyzed 11 site-directed MrkA mutants to identify domains that are critical for the properties. Escherichia coli strains expressing type 3 fimbriae with an Ala(More)
A laser diffraction-induced dielectrophoresis (DEP) phenomenon for the patterning and manipulation of individual HepG2 cells and polystyrene beads via positive/negative DEP forces is reported in this paper. The optoelectronic substrate was fabricated using an organic photoconductive material, TiOPc, via a spin-coating process on an indium tin oxide glass(More)
We have designed and fabricated a novel chemotactic gradient Labchip for studying cell migration quantitatively. Owing to the great potential of garlic and its preparations in developing antiinflammatory drugs, the aim of the present study is to investigate the effect of garlic oil on the locomotion of a neutrophil-like cell by measuring the dynamic(More)