Learn More
Targeting the mammalian target of rapamycin (mTOR) protein is a promising strategy for cancer therapy. The mTOR kinase functions in two complexes, TORC1 (target of rapamycin complex-1) and TORC2 (target of rapamycin complex-2); however, neither of these complexes is fully inhibited by the allosteric inhibitor rapamycin or its analogs. We compared rapamycin(More)
Activation of PI3K (phosphoinositide 3-kinase) is a shared response to engagement of diverse types of transmembrane receptors. Depending on the cell type and stimulus, PI3K activation can promote different fates including proliferation, survival, migration and differentiation. The diverse roles of PI3K signalling are well illustrated by studies of(More)
Class IA phosphoinositide 3-kinase (PI3K) is essential for clonal expansion, differentiation, and effector function of B and T lymphocytes. The p110δ catalytic isoform of PI3K is highly expressed in lymphocytes and plays a prominent role in B and T cell responses. Another class IA PI3K catalytic isoform, p110α, is a promising drug target in cancer but(More)
The Biogenesis of Lysosome-Related Organelles Complex 1 (BLOC-1) is a protein complex containing the schizophrenia susceptibility factor dysbindin, which is encoded by the gene DTNBP1. However, mechanisms engaged by dysbindin defining schizophrenia susceptibility pathways have not been quantitatively elucidated. Here, we discovered prevalent and novel(More)
Inhibitors of the mechanistic target of rapamycin (mTOR) hold promise for treatment of hematological malignancies. Analogs of the allosteric mTOR inhibitor rapamycin are approved for mantle cell lymphoma but have limited efficacy in other blood cancers. ATP-competitive "active-site" mTOR inhibitors produce more complete mTOR inhibition and are more(More)
The mammalian target of rapamycin (mTOR) is a kinase that functions in two distinct complexes, mTORC1 and mTORC2. In peripheral B cells, complete deletion of mTOR suppresses germinal center B-cell responses, including class switching and somatic hypermutation. The allosteric mTORC1 inhibitor rapamycin blocks proliferation and differentiation, but lower(More)
Mouse models lacking proteins essential for autophagosome formation have demonstrated that autophagy plays a critical role in T cell development and activation. To better understand the function of autophagy in quiescent and activated lymphocytes, we have generated a mouse deficient in rab7 selectively in T cells and compared the effects of blocking(More)
Phosphoinositide 3-kinases (PI3Ks) are promising targets for therapeutic development in cancer. The class I PI3K isoform p110α has received considerable attention in oncology because the gene encoding p110α (PIK3CA) is frequently mutated in human cancer. However, little is known about the function of p110α in lymphocyte populations that modulate(More)
Rapamycin has been used as a clinical immunosuppressant for many years; however, the molecular basis for its selective effects on lymphocytes remains unclear. We investigated the role of two canonical effectors of the mammalian target of rapamycin (mTOR): ribosomal S6 kinases (S6Ks) and eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs). S6Ks(More)
The microbial metabolism of MK 954 (Fig. 1), a novel nonpeptide angiotensin II receptor antagonist, was investigated using 40 microorganisms in an initial screen for cultures that will produce metabolites similar to those produced in the mammalian liver. The microbial transformation occurred under aerobic conditions in shake flasks incubated at 27 degrees(More)