Learn More
During embryogenesis, skeletal muscle forms in the vertebrate limb from progenitor cells originating in the somites. These cells delaminate from the hypaxial edge of the dorsal part of the somite, the dermomyotome, and migrate into the limb bud, where they proliferate, express myogenic determination factors and subsequently differentiate into skeletal(More)
We address the molecular control of myogenesis in progenitor cells derived from the hypaxial somite. Null mutations in Pax3, a key regulator of skeletal muscle formation, lead to cell death in this domain. We have developed a novel allele of Pax3 encoding a Pax3-engrailed fusion protein that acts as a transcriptional repressor. Heterozygote mouse embryos(More)
Canonical Wnt/beta-catenin signaling regulates the activation of the myogenic determination gene Myf5 at the onset of myogenesis, but the underlying molecular mechanism is unknown. Here, we report that the Wnt signal is transduced in muscle progenitor cells by at least two Frizzled (Fz) receptors (Fz1 and/or Fz6), through the canonical beta-catenin pathway,(More)
Myf5, a member of the myogenic regulatory factor family, plays a major role in determining myogenic cell fate at the onset of skeletal muscle formation in the embryo. Spatiotemporal control of its expression during development requires multiple enhancer elements spread over >100 kb at the Myf5 locus. Transcription in embryonic limbs is regulated by a 145-bp(More)
Pax genes have important roles in the regulation of stem cell behavior, leading to tissue differentiation. In the case of skeletal muscle, Pax3 and Pax7 perform this function both during development and on regeneration in the adult. The myogenic determination gene Myf5 is directly activated by Pax3, leading to the formation of skeletal muscle. Fgfr4 is also(More)
Myf5 is the first myogenic regulatory factor to be expressed in the mouse embryo and it determines the entry of cells into the skeletal muscle programme. A region situated between -58 kb and -48 kb from the gene directs Myf5 transcription at sites where muscles will form. We now show that this region consists of a number of distinct regulatory elements that(More)
The transcription factors Pax3 and Pax7 are important regulators of myogenic cell fate, as demonstrated by genetic manipulations in the mouse embryo. Pax3 lies genetically upstream of MyoD and has also been shown recently to directly control Myf5 transcription in derivatives of the hypaxial somite, where it also plays an important role in ensuring cell(More)
How signaling gradients supply positional information in a field of moving cells is an unsolved question in patterning and morphogenesis. Here, we ask how a Wnt signaling gradient regulates the dynamics of a wavefront of cellular change in a flow of cells during somitogenesis. Using time-controlled perturbations of Wnt signaling in the zebrafish embryo, we(More)
The concentrations of plasma melatonin and cortisol were determined every 20 min during a 24 h period in 6 women aged 24 to 45 years with Cushing's syndrome of differing aetiologies (4 adrenal adenomas, 2 adrenal hyperplasia). Melatonin was assayed after chloroform extraction according to the method of Rollag and Niswender (1976). Abnormal melatonin(More)
The 24-h plasma cortisol profile was obtained at 20-min intervals in 18 patients with Cushing's syndrome (10 with Cushing's disease, 5 with adrenal adenoma, 2 with ectopic ACTH secretion and 1 of questionable aetiology). The mean cortisol level was maximum in the case of ectopic ACTH secretion. The coefficient of variation of cortisol levels was subnormal(More)