Learn More
In the fungus Penicillium chrysogenum, penicillin (PEN) production is compartmentalized in the cytosol and in peroxisomes. Here we show that intact peroxisomes that contain the two final enzymes of PEN biosynthesis, acyl coenzyme A (CoA):6-amino penicillanic acid acyltransferase (AT) as well as the side-chain precursor activation enzyme phenylacetyl CoA(More)
This study aimed at developing an alternative host for the production of penicillin (PEN). As yet, the industrial production of this beta-lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceuticals, represents an attractive alternative. Introduction of the(More)
We aim to introduce the penicillin biosynthetic pathway into the methylotrophic yeast Hansenula polymorpha. To allow simultaneous expression of the multiple genes of the penicillin biosynthetic pathway, additional markers were required. To this end, we constructed a novel host-vector system based on methionine auxotrophy and the H. polymorpha MET6 gene,(More)
β-lactam antibiotics (e.g. penicillins, cephalosporins) are of major clinical importance and contribute to over 40% of the total antibiotic market. These compounds are produced as secondary metabolites by certain actinomycetes and filamentous fungi (e.g. Penicillium, Aspergillus and Acremonium species). The industrial producer of penicillin is the fungus(More)
BACKGROUND beta-Lactams like penicillin and cephalosporin are among the oldest known antibiotics used against bacterial infections. Industrially, penicillin is produced by the filamentous fungus Penicillium chrysogenum. Our goal is to introduce the entire penicillin biosynthesis pathway into the methylotrophic yeast Hansenula polymorpha. Yeast species have(More)
Hansenula polymorpha is a methylotrophic yeast species that has favorable properties for heterologous protein production and metabolic engineering. It provides an attractive expression platform with the capability to secrete high levels of commercially important proteins. Over the past few years many efforts have led to advances in the development of this(More)
  • 1