Loizos Michael

Learn More
CP-networks have been proposed as a simple and intuitive graphical tool for representing conditional ceteris paribus preference statements over the values of a set of variables. While the problem of reasoning with CP-networks has been receiving some attention, there are very few works that address the problem of learning CP-networks. In this work we(More)
We present the first design for a fully expressive iterative combinatorial exchange (ICE). The exchange incorporates a tree-based bidding language that is concise and expressive for CEs. Bidders specify lower and upper bounds on their value for different trades. These bounds allow price discovery and useful preference elicitation in early rounds, and allow(More)
We present a novel tree-based logical bidding language, TBBL, for preference elicitation in combinatorial exchanges (CEs). TBBL provides new expressiveness for two-sided markets with agents that are both buying and selling goods. Moreover, the rich semantics of TBBL allow the language to capture new structure, making it exponentially more concise than OR*(More)
This paper proposes that the flocking behavior of birds can guide the design of a robust, scalable and self-adaptive congestion control protocol in the context of wireless sensor networks (WSNs). The proposed approach adopts a swarm intelligence paradigm inspired by the collective behavior of bird flocks. The main idea is to ‘guide’ packets (birds) to form(More)
The ability to predict, or at least recognize, the state of the world that an action brings about, is a central feature of autonomous agents. We propose, herein, a formal framework within which we investigate whether this ability can be autonomously learned. The framework makes explicit certain premises that we contend are central in such a learning task:(More)
Reading involves, among others, identifying what is implied but not expressed in text. This task, known as textual entailment, offers a natural abstraction for many NLP tasks, and has been recognized as a central tool for the new area of Machine Reading. Important in the study of textual entailment is making precise the sense in which something is implied(More)